Законы и закономерности развития систем. ТРИЗ. Изд. 2-е, испр. и дополненное

Text
Read preview
Mark as finished
How to read the book after purchase
Font:Smaller АаLarger Aa

1.9. Системный подход

1.9.1. Системное мышление

Системное мышление – это мышление, которое использует системный подход и является одним из элементов изобретательского мышления.

Системный подход – рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, то есть рассмотрение объекта как системы.

Системный подход должен использоваться как при анализе, так и при синтезе систем.

При системном анализе рассматривает систему не изолированно, а как совокупность взаимосвязанных элементов, имеющую связь с надсистемой и внешней средой и влияние внешней среды на систему. Цель анализа выявить все составляющие элементы, взаимосвязи и взаимовлияния между ними, приводящие к определенным изменениям. Выявляются все взаимовлияния системы на подсистемы, на надсистему и окружающую систему, и обратное влияние надсистемы и окружающей среды на систему. Прослеживаются все закономерности изменений, функционирования и развития систем.

Системный синтез предусматривает создание сбалансированной системы, как внутри себя, так и с внешней средой.

Системный подход реализует требования общей теории систем, согласно которой каждый объект должен рассматриваться как большая и сложная система и, одновременно, как элемент более общей системы. Теория систем изучает различные виды систем, их функционирование и закономерности развития. Она была разработана Людвигом фон Берталанфи (Ludwig von Bertalanffy) в XX веке. Его предшественником был Александр Александрович Богданов, который разработал «всеобщую организационную науку» тектологию и предвосхитил некоторые положения кибернетики.

Основным объектом рассмотрения в системном подходе, теории систем, системном анализе и синтезе является система.

1.9.2. Анализ и синтез систем

Системный подход мы будем использовать для:

– анализа существующих систем;

– создания (синтеза) систем.

Под искусственными системами мы будем понимать:

– Продукт и/или услугу;

– Компанию, разрабатывающую и/или выпускающую продукт (услугу);

– Рынок, для которого делается продукт (услуга).

Анализ и синтез систем должны использовать системный подход.

Системный синтез систем должен осуществляться в следующей последовательности: выявление потребностей, функций, принципа действия и систем (рис. 1.3).

Рис. 1.3. Последовательность синтеза системы


Анализ системы осуществляется для:

– Определения потребности в данной системе;

– Выявления недостатков системы.


Определение потребности в системе осуществляется в обратном синтезу порядке (рис. 1.4):

1. Анализ существующей системы, ее составных частей и процессов;

2. Анализ принципа действия системы;

3. Выявление главной, основных и второстепенных функций системы;

4. Выявление потребности, которую удовлетворяет данная система.


Рис. 1.4. Последовательность системного анализа


Новую систему можно строить для существующих или альтернативных принципа действия, функций и потребностей.

В дальнейшем могут быть выбраны или разработаны альтернативные системы, использующие тот же принцип действия, или альтернативные системы, выполняющие ту же функцию, но с другим принципом действия, или альтернативные системы, удовлетворяющие данную потребность, но с другой главной функцией или выявление других потребностей и построение альтернативных систем, удовлетворяющие эти потребности.

Альтернативные принципы действия можно найти, используя различные виды эффектов и трансфер технологий. Альтернативные функции можно выявить, применяя закономерности изменения функций. Альтернативные потребности можно выявить, используя закономерности развития потребностей.

Закономерности изменения функций и развития потребностей будут изложены ниже в главе 7 прогнозирование.

На рис. 1.5 показана схема выявления альтернативных принципов действия, главных функций и потребностей для построения новых систем.


Рис. 1.5. Выявление альтернативных принципов действия, главных функций и потребностей продукта


Примечание. Под эффектами понимается не только физические, химические, биологические и математические (в частности, геометрические) эффекты, но и технические эффекты, т. е. трансфер технологий.


1.9.3. Анализ выявления недостатков

Анализ системы для определения ее недостатков проводится в следующей последовательности (рис. 1.6):

1. Компонентный анализ.

2. Структурный анализ.

3. Анализ функций.

4. Диагностический анализ.


Рис. 1.6. Последовательность этапов системного анализа для выявления недостатков


Цель компонентного анализа – построить компонентную модель. Компонентом мы будем называть любой элемент системы на всех иерархических уровнях: подсистемы, системы, надсистема и окружающая среда. На этом этапе выявляются все компоненты и записываются в таблицу.

Цель структурного анализа – построить структуру системы. Определяют все связи между компонентами. Для этого строят матрицу связей.


Таблица 1.1. Матрица связей


Примечание. Знаком «+» обозначено наличие связи.

Используя данные таблицы, строят графическую модель связей между компонентами (рис. 1.7).


Рис. 1.7. Модель связей


Цель этапа анализа функций – построить функциональную модель. На этом этапе определяют направление и характер действия, т. е. функции.

Таблица функций представлена в табл. 1.2.


Таблица 1.2. Функции элементов


Примечание. У одного элемента может быть несколько функций.

По таблице функций (табл. 1.2) строят графическую функциональную модель.


Рис. 1.8. Функциональную модель


Цель диагностического анализа – построить диагностическую модель (табл. 1.3), т. е. оценить функции и потоки.


Таблица 1.3. Диагностическая матрица


По таблице диагностической матрицы (табл. 1.3) строят графическую диагностическую модель (рис. 1.9).


Рис. 1.9. Диагностическая модель


Итак, мы рассмотрели основные определения системного подхода: система, функция, иерархия и присущие им понятия: целостность, свойство, отношение, процесс. Кроме того, были введены понятия: антропогенная и техническая системы.

1.10. Системность

1.10.1. Общее представление

Понятие системности вытекает из системного подхода.

Системность – это свойство, заключающееся в согласовании всех взаимодействующих объектов, включая окружающую среду.

Такое взаимодействие должно быть полностью сбалансировано.

Объект будет выполнен системным тогда и только тогда, когда он отвечает следующим системным требованиям.

1. Система должна отвечать своему предназначению.

2. Система должна быть жизнеспособной.

3. Система не должна отрицательно влиять на расположенные рядом объекты и окружающую среду.

4. При построении системы необходимо учитывать закономерности ее развития.

Системные требования представляют собой составляющие закона увеличения степени системности (рис. 1.10).


Рис. 1.10. Структура системности


1.10.2. Предназначение системы


Предназначение системы описывается главной функцией системы, удовлетворяя определенную потребность.


1.10.3. Жизнеспособность


Жизнеспособность технической системы определяется ее работоспособностью и конкурентоспособностью.

Система будут жизнеспособна, если она работоспособна и конкурентоспособна.

 

Работоспособность — это способность выполнять заданную функцию с параметрами, установленными техническими требованиями, в течение расчетного срока службы33.

Другими словами, работоспособность – это качественное функционирование системы, т. е. качественное выполнение главной функции системы.

К параметрам работоспособности помимо качественного функционирования системы (в том числе надежности и долговечности) можно также отнести эргономические параметры (характеризуют соответствие товара свойствам человеческого организма).

Работоспособность определяется наличием необходимых элементов с требуемым качеством, наличием и качеством необходимых связей между элементами, организацией необходимых потоков с требуемым качеством.

Конкурентоспособность товара – способность продукции быть привлекательной по сравнению с другими изделиями аналогичного вида и назначения, благодаря лучшему соответствию своих качественных и потребительским оценкам34.

Конкурентоспособность конкретной системы определяется по сравнению с конкурирующей системой. Конкуренция зависит:

– от количества и качества выполняемых функций;

– стоимости данной системы;

– своевременности ее появления на рынке.

Помимо технических функций следует учитывать также эстетические и психологические.

Один из основных эстетических параметров – это дизайн продукта и упаковки, включая и цветовую гамму.

К психологическим параметрам следует отнести престижность привлекательность, доступность и т. п.

Теперь можно представить более детальную схему структуры системности (рис. 1.11), которая является структурой закона увеличения степени системности.


Рис. 1.11. Структура закона повышения степени системности


1.10.4. Отрицательно не влиять на окружение


Отсутствие учета таких влияний может не только отрицательно сказаться на работоспособности системы, но и вредно влиять на окружающие системы, надсистему и внешнюю среду.


1.10.5. Учет закономерностей развития


Системность так же учитывает и закономерности исторического развития исследуемого объекта. Это последнее требование системности. Оно учитывается при прогнозировании развития объекта исследования путем учета выявленных тенденций исторического и логического развития данного объекта, и учета общих законов развития систем. В результате получают общую тенденцию развития исследуемого объекта и концептуальное представление его следующих поколений.

Глава 2. Структура законов и закономерностей развития систем

Только тогда можно понять сущность вещей, когда знаешь их происхождение и развитие.

Гераклит Эфесский
(544—483 гг. до н. э.)
древнегреческий философ

2.1. Общая структура законов и закономерностей развития систем

Система законов и закономерностей разбита на безусловные и небезусловные. Безусловные будем называть законами, а небезусловные – закономерностями. Безусловные – это те, не соблюдение которых приводит к неработоспособности системы. Небезусловные – это закономерности, которые реализуются только в определенных условиях, а при других условиях могут и не реализоваться.

Развитие любых объектов материального мира, природы, различных областей знаний, деятельности и мышления происходит по своим определенным законам.

Законы носят объективный характер, выражая реальные отношения вещей, а также их отражение в сознании.

Закономерности могут иметь и противоположные тренды и в зависимости от конкретных условий могут использоваться тренд или его противоположность анти-тренд.


Законы и закономерности развития систем могут быть:

– Всеобщие это универсальные законы, справедливые для любой системы независимо от ее природы, вследствие единства материального мира. Самые общие из них – законы диалектики и закономерность S-образного развития;

– Законы и закономерности развития систем, присущие для всех антропогенных систем;

Структура законов и закономерностей развития систем представлена на рис. 2.1.


Рис. 2.1. Структура законов и закономерностей развития

2.2. Структура закономерностей развития систем

Законы и закономерности развития систем определяют требования к построению и развития систем.

Общее направление развития систем идет в сторону увеличения степени системности.

Законы и закономерности развития систем можно разделить на две группы (рис. 2.2):

– законы построения систем (определяющие работоспособность системы);

– закономерности эволюции систем (определяющие развитие систем).


Рис. 2.2. Схема закономерностей развития систем


Законы построения систем должны обеспечивать требования системности:

– предназначение;

– работоспособность.

Закономерности эволюции систем должны обеспечивать другие требования системности:

– конкурентоспособность;

– не влиять отрицательно на окружение;

– учитывать закономерности развития систем.

Структура законов построения систем будут изложены в главе 4, а закономерности эволюции в главе 5.

Глава 3. Всеобщие законы и закономерности развития
систем

3.1. Законы диалектики

3.1.1. Структура законов диалектики


Наиболее общие из законов диалектики, следующие:

– закон перехода количественных изменений в качественные;

– закон единства и борьбы противоположностей;

– закон отрицания отрицания;

Структура законов диалектики показана на рис. 3.1.


Рис. 3.1. Структура законов диалектики


3.1.2. Закон перехода количественных изменений


Закон перехода количественных изменений в качественные вскрывает общий механизм развития.

В процессе развития количественные изменения в системе происходят непрерывно. При достижении определенного предела совершаются качественные изменения. Новое качество ускоряет темпы роста.

Количественные изменения при этом совершаются постепенно (эволюционно), а качественные – скачком (революционно). Характер и продолжительность скачка могут быть разнообразными – длительными и кратковременными, бурными и относительно спокойными, с взрывом и без него и т. д.


3.1.3. Закон единства и борьбы противоположностей


Закон единства и борьбы противоположностей заключается в том, что все сущее состоит из противоположных начал, которые, будучи едиными по свое природе, находятся в борьбе и противоречат друг другу (пример: день и ночь, горячее и холодное, черное и белое, зима и лето, молодость и старость и т. д.).


3.1.4. Закон отрицания отрицания


Суть закона отрицания отрицания заключается в том, что процесс поступательного развития происходит в три стадии:

– исходное состояние системы;

– отрицание этого состояния и переход в другое состояние;

– отрицание данного состояния (отрицание отрицания) и возврат к исходному состоянию, но, как правило, на более высоком уровне с применением новых принципов действия, элементов, материалов, технологий и т. д.

Процесс развития происходит с относительной повторяемостью, как бы по пройденным ступеням – по спирали.

3.2. Закономерность S-образного развития

3.2.1. Общие понятия


Любая система проходит несколько этапов своего развития. Эти этапы графически можно представить в виде кривой (рис. 3.2).


Рис. 3.2. S – образная кривая роста

Где P – параметр системы, t – время


В качестве параметра «P» могут быть, прежде всего, главные характеристики системы, например, размеры, скорость, мощность, количество проданных товаров, продолжительность жизни, численность населения, количество популяций и т. д.

Вначале система развивается медленно (этап I), при достижении некоторого уровня развитие ускоряется (этап II) и после достижения некоторого более высокого уровня скорость роста уменьшается и в конечном итоге рост параметра системы прекращается (этап III). Это этап стагнации, который может продолжиться очень долго. Иногда параметры начинают уменьшаться (этап IV) – система умирает (на графике это изображено пунктирной линией).

Подобные кривые часто называют S—образными или логистическими (логиста).

Иногда этапы жизненного цикла можно представить в виде шляпе-образной кривой (рис. 3.3). Практически это представление полностью показывает этап IV.


Рис. 3.3. Шляпе-образной кривая развития

Где P – параметр, t – время


3.2.2. Огибающие кривые


Прекращение роста данной системы не означает прекращение прогресса в этой области. Появляются новые более совершенные системы – происходит скачок в развитии. Это типичный пример проявления закона перехода количественных изменений в качественные (п. 3.1.2). Такой процесс изображен на рис. 3.4.


Рис. 3.4. Скачкообразное развитие систем


На смену системе 1 приходит 2. Скачкообразное развитие продолжается – появляются системы 3, 4 и т. д. (рис. 3.5).


Рис. 3.5. Огибающая кривая


Общий прогресс можно показать при помощи касательной к данным кривым (пунктирная линия) – так называемой огибающей кривой35.

Развитие любого вида систем может быть примером, подтверждающим эту закономерность.

Детально всеобщие законы и закономерности развития систем будут изложены в томе 2.

Глава 4. Законы построения систем

4.1. Структура законов построения систем

Законы построения предназначены для создания новой работоспособной системы.

 

Работоспособная система:

‒        отвечает ее предназначению (т. е. выполняет главную функцию системы);

‒        имеет определенную структуру;

‒        структура обеспечивает свободное прохождение необходимых потоков;

‒        система минимально согласована.

Необходимым условием принципиальной работоспособности системы является обеспечение ее предназначения и наличие основных работоспособных частей и связей системы.

В связи с этим группа законов построения систем включает (рис. 4.1):

– закон соответствия;

– закон полноты и избыточности системы;

– закон проводимости потоков;

– закон минимального согласования.


Рис. 4.1. Структура законов построения систем

4.2. Закон соответствия

Закон соответствия обеспечивает системное требование предназначение. Этот закон говорит о необходимости соблюдения соответствия структуры главной функции системы.

Структура системы должна обеспечивать выполнение главной функции системы, удовлетворяя определенную потребность. Для обеспечения работоспособности структура системы должна так же выполнять все основные и вспомогательные функции. Структура обеспечивает необходимый набор элементов, связей и взаимодействий между ними. Связи обеспечивают единство системы и возможность прохода потоков.

4.3. Закон полноты и избыточности

4.3.1. Общая информация


Разработка новой системы должна начинаться с определения всех системных свойств. Прежде всего, начинают с функциональности системы.

Полнота и избыточность могут быть функциональными и структурными.


4.3.2. Закономерность полноты


Полнота может быть функциональной и структурной.


Функциональная полнота

Функциональная полнота должна обеспечивать генеральную цель и главную функцию системы, и выполнять все основные и вспомогательные функции, т. е. выполнять одно из требований системности – предназначение.

Функциональную полноту можно рассматривать и как закон функциональной полноты.


Структурная полнота

Структурная полнота должна обеспечить другое требование системности – работоспособность (часть жизнеспособности). Это обеспечивается наличием необходимых элементов (частей) и связей системы, т. е. обеспечение состава и структуры системы.

Структурную полноту можно рассматривать и как закон структурной полноты системы

Элементы могут быть:

– вещественные;

– энергетические;

– информационные.

Они должны содержаться в необходимом количестве и обеспечивать определенное качество.

К вещественным элементам относятся, например, все механические части, в частности корпус.

К энергетическим элементам относятся топливо, источники и преобразователи различных видов энергии.

К информационным элементам могут, например, относиться элементы системы управления, обработки, хранения и передачи информации.

К основным частям (элементам) системы относятся (рис. 4.2):

– рабочий орган;

– источник и преобразователь вещества, энергии и информации;

– связи;

– система управления.


Рис. 4.2. Основные элементы системы


К основным частям системы можно отнести и корпус. Он не является минимально необходимым. Отдельные системы могут обходиться и без него, но большинство систем имеют корпус.

Существуют виды технических систем, где корпус является минимально необходимым, например, судно. В водоизмещающих суднах корпус выполнят функцию удержания на плаву.

Набор всех основных частей системы представлен на рис. 4.3.


Рис. 4.3. Основные элементы технической системы


Это минимально необходимый набор частей системы, который обеспечивает ее работоспособность.


Рабочий орган


Рабочий орган (иногда его называют «исполнительный элемент» или «инструмент») выполняет главную функцию системы. Именно рабочий орган непосредственно взаимодействует с изделием, для которого предназначена данная система.

Остальные части системы предназначены для обеспечения работоспособности рабочего органа.


Источник и преобразователь


Существуют разнообразные источники вещества, энергии и информации.

Имеются природные и искусственные источники вещества. К природным источникам вещества можно отнести, например, полезные ископаемые, древесину и т. д., а к искусственным – полученные в результате направленной деятельности человечества.

Среди источников энергии можно назвать, например, солнце, ветер, электричество, топливо и т. д.

Источники энергии могут быть внешние, внутренние и смешанные.

Источники информации могут быть:

– по виду поля: звуковые (акустические); электромагнитные, включающее электрическое и магнитное поля и весть спектр электромагнитных излучений (радиоволны, терагерцовые, инфракрасные – включая тепловые, видимый свет, ультразвуковые, рентгеновские и жесткие); вкусовые; запаховые; тактильные и т. д.;

– по виду хранения: наскальные, письменные (книги, журналы, газеты и т. д.), электронные (все виды запоминающих устройств, Интернет и т. д.), произведения искусств и т. п.

Известны различные преобразователи вещества, энергии и информации.

К преобразователям вещества можно отнести химические реакции, электричество (например, электролиз, гальванопластика и т. д.), нанотехнологии

и т. д.

Среди преобразователей энергии можно назвать двигатели, генераторы, трансформаторы, выпрямители, преобразователи частоты, химические реакции и т. д.

Преобразователи информации существуют для каждого из видов информации, их источников и хранения. В информационных системах используют компьютерные способы преобразования информации.


Связи


Связи должны обеспечивать:

подвод необходимых и достаточных:

– веществ;

– энергии;

– информации;

организацию потоков (вещества, энергии и информации);

обеспечение системных свойств;

отсутствие вредных воздействий (вредных потоков):

– внутренние не должны осуществлять вредных воздействий между элементами системы (вредные потоки);

– внешние связи не должны осуществлять вредных воздействий системы на надсистему, окружающую среду и противостоять вредным воздействиям окружающей среды и надсистемы на систему (вредные потоки).

Связи можно разделить по признакам.

1. Уровень взаимодействия:

– внутренние связи;

– внешние связи.

2. Вид связей:

– вещественные;

– энергетические;

– информационные.

3. Полезность:

– полезные связи;

– бесполезные связи;

– вредные связи.

4. Наличие:

– присутствующая связь;

– отсутствующая связь.

5. Временные характеристики:

– постоянная связь;

– временная связь;

– динамическая связь.

6. Вид контакта:

– контактные;

– бесконтактные.

Внутренние связи – это связи внутри системы. Один из видов внутренних связей – это сборка элементов системы в корпусе.

Внутренние связи в системе необходимы для:

– построения структуры системы;

– определения внутренней функциональности системы;

– выявления нежелательных и вредных воздействий в системе.

Внешние связи – это связи с надсистемой, включая изделие, для которого предназначена система, и связи с внешней средой (включая все окружающие системы). Связь с объектом должна обеспечивать выполнения главной функции системы.

Внешние связи системы определяют работоспособность системы при взаимодействии с надсистемой и внешней средой и отсутствие отрицательных внешних воздействий на них. Система должна оставаться работоспособной при воздействии расчетных (заранее заданных) внешний воздействий.

Вещественные связи – это контактные связи, чаще всего механические, например, соединение деталей в корпусе, соединение проводов, труб, трансмиссии и т. д.

К энергетическим связям могут быть отнесены, например, электрические провода и кабели, топливные трубопроводы, бесконтактная передача энергии, например, индукционная и т. д.

К информационным связям могут быть отнесены, например, провода, по которым осуществляется передача информации, контроль и управление, все виды беспроводной связи и т. д., и т. п.

Полезные связи обеспечивают выполнение полезных функций.

Бесполезные связи – это, как правило, лишние связи, не создающие полезной работы и не выполняющие полезные функции. Это избыточные связи, которые желательно устранить.

Вредные связи – это связи, создающие вредные действия (вредные функции). Этот вид связей необходимо устранять в первую очередь.

Отсутствующая связь возникает в случаях, когда при проектировании не учли какую-то полезную связь или после проектирования, возникла необходимость в новой связи, а она не предусмотрена. Такую связь мы называет отсутствующей.

Постоянная связь – это связь, которая не меняется в процессе работы системы, например, связь элементов в корпусе.

Временная связь – это связь, которая со временем исчезает, например, стрела имеет связь с луком только во время прицеливания.

Динамическая связь – это связь, изменяющаяся во времени, например, в телефоне имеется связь с абонентом только во время разговора, потом она отключается. При необходимости эта связь может быть восстановлена. Практически в любом электронном приборе, транзистор подключает и отключает сигнал.

Контактные связи осуществляются с помощью веществ – вещественные связи (механические соединения, трубопроводы, провода и т. п.).

Бесконтактные связи осуществляются с помощью полей (весь диапазон электромагнитных излучений: радиоволны, инфракрасное, видимое, ультрафиолетовое, рентгеновские и гамма-излучения; электрическое и магнитное поля; звуковые поля и т. д.).


Система управления


Система управления обеспечивает функции контроля и управления объектом.


Историческая справка


Хотелось бы напомнить, как развивалось понятие «техническая система» начиная с 19 века.

В 1843 г. В. Шульц описал прототип закона полноты частей системы. Он писал, что «можно провести границу между орудием и машиной: заступ, молот, долото и т. д., системы рычагов и винтов, для которых, как бы искусно они ни были сделаны, движущей силой служит человек… все это подходит под понятие орудия; между тем плуг с движущей его силой животных, ветряные мельницы следует причислить к машинам»36.

Чуть позже некоторые законы развития техники были описаны К. Марксом и Ф. Энгельсом.

К. Маркс описал эти законы в разделе «Развитие машин»37: «… различие между орудием и машиной устанавливают в том, что при орудии движущей силой служит человек, а движущая сила машины – сила природы, отличная от человеческой силы, например, животное, вода, ветер и т. д.»38. Далее К. Маркс пишет: «Всякое развитое машинное устройство состоит из трех существенно различных частей: машины—двигателя, передаточного механизма, наконец, машины-орудия, или рабочей машины. Машина-двигатель действует как движущая сила всего механизма. Она или сама передает свою двигательную силу или как паровая машина, калорическая машина, электромагнитная машина и т. д., или же получает импульс извне, от какой-либо готовой силы природы, как водяное колесо от падающей воды, крыло ветряка от ветра и т. д. Передаточный механизм, состоящий из маховых колес, подвижных валов, шестерен, эксцентриков, стержней, передаточных лент, ремней, промежуточных приспособлений и принадлежностей самого разного рода, регулируют движения, изменяет, если это необходимо, его форму, например, превращает из перпендикулярного в круговое, распределяет его и переносит на рабочие машины. Обе эти части механизма существуют только затем, чтобы сообщить движение машине-орудию, благодаря чему она захватывает предмет труда и целесообразно изменяет его. … Первоначально „машина-орудие“ (рабочая машина) представляла в очень измененной форме все те же аппараты и орудия, которыми работают ремесленник или мануфактурный рабочий, но это уже орудия не человека, а орудия механизма, или механические орудия»39.


В терминах, принятых в ТРИЗ, на наш взгляд, описанные понятия можно представить:

– Орудие – это рабочий орган или инструмент;

– Машина – видимо, можно так и оставить.

По Марксу «машинное устройство» состоит из частей:

– машина—двигатель;

– передаточный механизм;

– машина-орудие, или рабочая машина.

В ТРИЗ эти понятия Г. С. Альтшуллер называл:

– машина—двигатель – двигатель;

– передаточный механизм – трансмиссия;

– машина-орудие, или рабочая машина – рабочий орган.

В первых работах Г. С. Альтшуллера он говорит о машинах и процессах40.

Состав компонентов технической системы (ТС) Г. С. Альтшуллер впервые описал в 1977 г. в работе41, а позже в книге «Творчество как точная наука»42 и позже в43 [6].

Практически с этого времени появилось понятие о ТС.

К ранее введенным компонентам «машинного устройства» (машина—двигатель, передаточный механизм, машина-орудие, или рабочая машина) Г. С. Альтшуллер добавил «орган управления».

Таким образом, Г. С. Альтшуллер практически ввел понятие, что считать системой. Он это описал в виде закона полноты частей системы.

По Альтшуллеру система должна состоять из:

– Двигателя;

– Трансмиссии;

– Рабочего органа;

– Органа управления.

Таким образом можно говорить о понятиях:

– Орудие или инструмент;

– Машина;

– Техническая система.

Орудие или инструмент содержат рабочий орган и трансмиссию и не содержит двигатель и органа управления. К ним относятся ручные инструменты, например, молоток, нож, ножницы, лопаты и т. д.; механические механизмы, например, ручная дрель и т. д.; приспособления, например, различные приспособления для кухни, типа ручной кофемолки, различных измельчителей, не содержавших двигатель и т. д. При работе с ними функции двигателя и системы управления выполняет человек.

Машина содержит рабочий орган, трансмиссию и двигатель и не содержит систему управления. Функцию системы управления выполнял человек.

Техническая система содержит все перечисленные выше компоненты: рабочий орган, трансмиссию, двигатель и орган управления.

Автор предлагает рассматривать отдельно эти три понятия и не называть любой объект системой.


4.3.3. Закономерность избыточности


Необходимым условием принципиальной работоспособности

системы является наличие избыточности системы.

Избыточность – это закономерность, по которой приблизительно 20% функций, элементов и связей системы выполняют около 80% работы.

При создании работоспособной системы нужно учитывать, что для выполнения какой-либо работы, кроме основных элементов и связей (выполняющих главную функцию), необходимо еще приблизительно 80% вспомогательных, причем они, как правило, выполняют только 20% основной работы. Учитывая это, следует предусмотреть лишний расход вещества, энергии и информации (приблизительно 20% на обеспечение главной функции и 80% основных и вспомогательных).

В общем виде закономерность избыточности формулируется как «20% усилий дают 80% результата, а остальные 80% усилий – лишь 20% результата»44.

Эта закономерность была открыт итальянским экономистом и социологом Вильфредо Парето (Vilfredo Federico Damaso Pareto) в 1897 году. Он получил название «Закон Парето» или «Принцип Парето».

33Работоспособность – материл из Википедии (в редакции автора).
34Конкурентоспособность товара – материал из Википедии.
35Эйрес Р. Научно-техническое прогнозирование и долгосрочное планирование. – М.: Мир, I971. Янч Э. Прогнозирование научно-технического прогресса. Пер. с англ. (Общ. ред. и предисл. Д. М. Гвилиани), Изд.2-е, доп. – М.: Прогресс, 1974, 586 с.
36Wilhelm Schulz «Die Bewegung der Produktion». Eine geschichtlich-statistische Abhandlung zur Grundlegung einer neuen Wissenschaft des Staats und der Gesellschaft». Zürich und Winterthur, 1843, p. 38 (В. Шульц. «Движение производства. Историко-статистическое исследование для обоснования новой науки о государстве и обществе». Цюрих и Винтертур, 1843. – C. 38).
37Маркс К. Капитал. – Маркс К., Энгельс Ф. Сочинения. Изд. 2-е. – М.: Политиздат, 1960, Т. 23. Глава XIII «Машины и крупная промышленность». – C. 382‒396.
38Маркс К. Капитал. – Маркс К., Энгельс Ф. Сочинения. Изд. 2-е. – М.: Политиздат, 1960, Т. 23. Глава XIII «Машины и крупная промышленность». – C. 383.
39Маркс К. Капитал. – Маркс К., Энгельс Ф. Сочинения. Изд. 2-е. – М.: Политиздат, 1960, Т. 23. Глава XIII «Машины и крупная промышленность». – C. 383‒384.
40Альтшуллер Г. С. Как научиться изобретать. – Тамбов: Кн. изд., 1961, 128 с. – С. 56. Альтшуллер Г. Как работать над изобретением. О теории изобретательства. – Азбука рационализатора. – Тамбов, Кн. Изд-во, 1963. 352 с. – С. 276. Альтшуллер Г. Как работать над изобретением. О теории изобретательства. – С. 300‒301.
41Альтшуллер Г. С. О законах развития технических систем. – Баку, 20.01.1977.
42Альтшуллер Г. С. Творчество как точная наука. Теория решения изобретательских задач. – М.: Сов. радио, 1979. – 184 с. – Кибернетика. – С. 113‒127.
43Альтшуллер Г. С. Законы развития технических систем. – Альтшуллер Г. С. Дерзкие формулы творчества. – Дерзкие формулы творчества/ (Сост. А. Б. Селюцкий). – Петрозаводск: Карелия, 1987. – 269 с. – (Техника-молодежь-творчество). – С. 61‒65.
44Закон Парето – материал из Википедии.