Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике»

Text
Read preview
Mark as finished
How to read the book after purchase
Font:Smaller АаLarger Aa

3. обучение и аттестация персонала

4. полный внешний сервис клапанов предприятия.

КЛАПАНЫ ПОВЫШЕННОЙ НАДЕЖНОСТИ МЕТSО AUTOMATION

1. Клапаны высокой цикличности для условий высокой цикличности процесса, со средним сроком службы 1-3 млн. циклов без потери эластичности седел.

2. Клапаны антиабразивного исполнения с металлическими седлами с наплавленным специальным стеллитом. Для высокоабразивных сред предусматривается клапан со специальным обратным запорным элементом, с меньшей герметичностью, но позволяющий «забутовать» зазор твердой составляющей потока за счет небольшой фильтрации.

3. Клапаны повышенной жесткости с запорным элементом STEM BALL для условий повышенной пульсации потока и вибраций.

4. Клапаны в антикавитационном исполнении со специальным элементом Q-TRIM. Сюда же относятся и клапаны со специальными инструментами управления для предотвращения высокой эрозии и кавитации в момент открытия или закрытия. Они позволяют ускорить или замедлить открытие клапана, добиваясь при этом снижения вероятности образования кавитирующего или эрозионного потока на ранних стадиях его образования.

5. Клапаны с повышенной коррозионной стойкостью. Традиционная сталь 316 может быть поэтапно заменена на сталь с молибденом 317, хастеллой, высоконикелевый сплав, титановый сплав, и далее для особо агрессивных хлорных сред – стеклопластик. Новинкой здесь являются корпуса и затворы из дуплекс сталей с повышенной размерной стабильностью и коррозионной стойкостью.

6. Интеллектуальные клапаны – это клапаны последнего поколения. Именно здесь клапаны претерпели наибольшее развитие за последнее время. Получение цифровой информации о состоянии клапана, с высокой прогнозирующей способностью по межремонтному сроку открывает новые возможности для повышения эффективности регулирования и гарантий эксплуатационной надежности.

В связи с приведенным обзором, и оценивая надежность клапанов, предлагаемых разными поставщиками, можно задаться вопросами:

– какие устройства предусмотрел производитель клапанов для повышения надежности, снижения отказов, включая метрологические отказы и сбои?

– есть ли у клапанов системы внутренней диагностики?

– что сделано для снижения механического износа, эрозии и коррозии?

– предусмотрено ли это на этапе проектирования, изготовления и эксплуатации?

ЦЕНА НАДЕЖНОСТИ

Эффект от повышения надежности работы клапанов весьма многообразен. В первую очередь, на этапе выбора клапана надежность обеспечивается опытом компании и специальной многоступенчатой программой выбора и оптимизации.

На первом этапе внедрения для крупных предприятий, для которых имеется статистика эксплуатации клапанов, есть возможность расширить гарантийные обязательства компании, например, до 2-х лет при выполнении определенных условий.

Далее, клапаны высокой надежности с применением интеллектуальных инструментов и самодиагностики позволяют увеличить межремонтные сроки, снизить число внеплановых остановов, снизить количество проверок клапанов, снизить роль человеческого фактора и количество аварий, связанных с ошибками персонала, в целом снизить объем обслуживания, предсказывать надежность и работоспособность, долговечность клапанов до момента аварийного выхода из строя.

Еще не так давно, одним из способов оценки надежности клапана являлись чисто экономические причины, связанные в основном с общим пониманием связи роста затрат на надежность с отдачей от этих мероприятий. По этой теории величина суммарной стоимости проектирования, изготовления и эксплуатации в зависимости от надежности имеет выраженный максимум в пределах P=0,8-0,9. Однако за последнее время все больше становится ясно, что главным критерием должен стать в основном рост надежности, опережая требования к снижению затрат. Это действительно так, поскольку стоимость обслуживания ненадежного клапана в течение срока эксплуатации может превышать стоимость клапана по некоторым данным в 10-100 раз, особенно, если учитывается не только стоимость клапана, но и потери от не выпущенной продукции.

Надежность в первую очередь связана с потребительской стоимостью, т.е. стоимостью в процессе эксплуатации. В нашем аспекте – это стоимость с заданным уровнем надежности и сроком службы. Как известно, стоимость в процессе эксплуатации превышает затраты на приобретение в несколько раз и именно это является источником истинной потребительской стоимости арматуры и возможности истинного снижения затрат. Однако, поскольку показатели надежности не входят в цену, то и не учитываются при расчете финансовых показателей предприятия, возможности устранения аварий и др. Такое положение негативно сказывается на взаимодействии потребителей и производителей арматуры. И это также означает, что при рассмотрении цены изделий надо в полном объеме учитывать и «цену надежности», добавляя в контрактные и гарантийные обязательства такие важные показатели как вероятность безотказной работы, ресурс, наработка на отказ и др.

Реальное снижение затрат по примеру расчета экономической эффективности затрат на повышение надежности гидротранспорта можно свести в следующую табл.2.17..

Табл. 2.17. Сводный технико-экономический эффект от повышения надежности арматуры в системе гидротранспорта в целом



Основой расчета служат не только потери из-за аварийных внеплановых остановов, но и снижение пропускной способности системы в целом.

В результате расчета становится ясно, что при более высоких прогнозных значениях надежности ожидаемая пропускная способность производства и выпуска продукции будет больше, чем при низких. Кроме того, за счет внедрения диагностики, могут быть снижены затраты на ППР, а это в свою очередь увеличит время полезной пропускной способности за счет снижения общих потерь времени и увеличения коэффициента технического использования и готовности.

Изменения в структуре предприятий и выделение отделов автоматизации в отдельные дочерние предприятия позволяет по новому взглянуть на влияние новой структуры на проблему надежности. Поскольку финансовые затраты бюджетируются и должны быть фиксированы, то становится весьма актуальным обслуживание с минимальными затратами. Основой такого развития становится повышение надежности и увеличение межремонтных сроков при снижении трудозатрат как на поиск и диагностику неисправностей, так и их устранение.

Высокая надежность в сочетании с системами самодиагностики, интеллектуального управления и специализированными программами сервисного обслуживания позволяет:

– улучшить процесс регулирования и метрологическую надежность,

– получить возможность задавать более жесткие нормы расхода и более низкую колебательность процесса без вероятности ненормальной работы оборудования,

– осуществлять эффективное снижение затрат за счет определения коэффициента технической готовности и его выполнения,

– снизить количество плановых остановов на ППР и уменьшить длительность самих остановов, перейти к фиксированным ценам на обслуживание,

– снизить перегрузки персонала и утомляемость в момент аварий,

– улучшить использование активов.

В общем, внедрение полноценных мероприятий по повышению надежности увеличивает эффективность обслуживания на 40%. Переход предприятия в целом на цифровую технологию позволяет увеличить производительность, снизить потери, повысить эффективность работы предприятия до 2–5% и более.

Как итог работы над надежностью компании разрабатывают программы повышения надежности разного уровня, одна из которых приведена в блок вставке.


БЛОК-ВСТАВКА. ПРОГРАММА РАСШИРЕНИЯ ГАРАНТИЙ НА КЛАПАНЫ NELES ПРОИЗВОДСТВА METSO AUTOMATION

Целью программы является комплексное повышение сроков службы клапанов и предоставляемых гарантий за счет поэтапного совершенствования эксплуатационной надежности клапанов.

Детальные технико-коммерческие предложения разрабатываются поэтапно и по согласованию сторон.


Обоснование программы

Надежность является наиболее важной характеристикой клапанов. Ее повышение позволяет компании постепенно повысить эффективность эксплуатации клапанного хозяйства, увеличить отказоустойчивость по большинству видов отказов, включая метрологические отказы и сбои. Рост надежности работы клапанов и КИП состоит из увеличения общей надежности, эксплуатационной и метрологической надежности. Благодаря имеющейся у МЕТSO AUTOMATION статистике сроков использования клапанов на большинстве крупных и средних предприятий РФ, созданному сервисному центру, осуществляющему поддержку предприятий, существует очевидная возможность увеличить гарантийные сроки. Программа рассчитана на крупные предприятия, имеющие большую установленную базу клапанов NELES.

При внедрении диагностики кроме расширения сроков гарантии появляется реальная возможность перехода на прогрессивные методы обслуживания и ремонта, такие как увеличение сроков безотказной работы и использования клапанов по их равнонадежности, групповое обслуживание по равнонадежным элементам, переход на кратное обслуживание по группам клапанов, унификация и др.

Задачами программы являются:

– выявление критериев, по которым может быть проведено расширение сроков гарантий,

– определение способов повышения надежности и расширения сроков гарантий на их основе,

– разработка организации процесса внедрения программы.


Типичные проблемы надежности на предприятиях

– быстрое нарастание сложности систем по сравнению с обеспечением надежности,

– ведение технического обслуживания и ремонтов в основном по отказам без прогнозирования отказа,

– отсутствие данных на предприятиях, не ведется паспортная документация по состоянию клапанов,

– низкая достоверность прогнозов неисправностей и потеря метрологической надежности,

– недостаточное внедрение цифровой техники, не позволяющей давать не только диагноз состояния, но и прогноз и генезис возможных неисправностей,

 

– отсутствие специальных средств диагностики,

– высокая стоимость повышения квалификации персонала для решения этих проблем,

– не проводятся программы повышения надежности, включая внедрение диагностики, обменного фонда и др.


Предложения

1. Аудит клапанов с целью анализа их эксплуатационной надежности методами предварительного статистического анализа и аудита с применением диагностических инструментов сервисного центра. Калибровка клапанов под условиях метрологической надежности.

2. Аттестация специалистов предприятия по надежности клапанов и арматуры.

3. Начало работ по системе обменного фонда.

4. Активное внедрение цифровых позиционеров сначала на критических контурах регулирования, далее на наиболее важных и вспомогательных.

5. Участие в пуске и шефмонтаже в инвестпроектах, проводимых предприятием, в качестве субпоставщиков клапанов при модернизации и автоматизации, с целью унификации и стандартизации клапанов и снижения затрат на запчасти, взаимозаменяемости и т.д. При этом задаются большие гарантии при соблюдении условий технического обслуживания.

6. Поэтапный переход на сервисное обслуживание клапанного хозяйства специалистами METSO AUTOMATION или уполномоченных партнеров.


Эффективность программы достигается за счет:

1. расширения сроков гарантий до 2-3 лет,

2. при повышении метрологической надежности: снижение потерь, избыточного добавления химикатов и связанных с ними затрат за счет снижения колебательности процесса до 50%,

3. увеличения межремонтных и межповерочных сроков по клапанному хозяйству,

4. снижения затрат на техобслуживание при внедрении системы диагностики FIELD CARE, работающей совместно с позиционерами при переводе от ремонта по «отказу» на диагностическое обслуживание «по состоянию»,

5. повышения эксплуатационной, надежности, управляемости и степени автоматизации процесса, устранение ошибок и потерь продукции, связанных с человеческим фактором.


Этапы программы

1. Предварительный этап

1.1. Подготовка исходных данных и расчет теоретической экономической эффективности внедрения программы расширения сроков гарантий и повышения надежности с учетом реального состояния работоспособности клапанов на предприятиях.

1.2. Статистический аудит с использованием базы BERNIE. Расчет среднего срока службы, интенсивности отказов, вероятности безотказности работы. Оценка возможностей увеличения средней наработки на отказ. Выявление слабых мест в работоспособности клапанов.

1.3. Определение новых, более высоких показателей как общей, так и метрологической надежности. Предварительный анализ и сравнение расчетного и фактического ресурса. Разработка диагностического процесса для регулирующих клапанов и арматуры. Расчеты количества, временных периодов и объема проведения диагностики. Подготовка рекомендаций по повышению надежности и удлинению срока предоставления гарантий.

1.4. Подготовка на основе новых критериев технико-коммерческого предложения.


2. Основной этап

2.1. Полевой аудит. Определение остаточного ресурса и прогнозирование кратности наработки. Проведение при необходимости перерасчета клапанов при помощи программы NELPROF и подготовка предложений и последовательности замены клапанов.

2.2. Калибровка клапанов под условия метрологической надежности, по отклонению в стабильном состоянии и динамическому отклонению.

2.3. Проведение работ по восстановлению и допоставке клапанов на наиболее узкие места по показателям надежности и срокам безотказной работы клапанов.


3. Этап внедрения

3.1. Обучение и аттестация персонала на предприятии.

3.2. Обеспечение аттестованного персонала диагностическими средствами и инструментом для проведения сервисных работ.

3.3. Организация шефмонтажа и сервиса, ведение паспортов клапанов и арматуры по результатам аудита.


4. Корректировка программы по результатам выполнения

Учитывая длительный срок внедрения подобных решений и разные стартовые позиции предприятий, предложения могут быть разбиты на 3 варианта.

4.1. Программа минимум «повышение надежности». Первоначальный анализ статистических данных поставки клапанов из системы БЕРНИ. Предварительная оценка надежности. Аудит клапанов на условия повышенной надежности на наиболее критичных участках. Анализ надежности по результатам сравнения длительной статистики с данными аудита. Поэтапная замена выходящих из строя регулирующих клапанов на клапаны НЕЛЕС с учетом требования метрологической надежности. Выявление слабых мест процесса. Периодическая проверка и ТО клапанов. Ведение паспортов и первичной документации по неисправностям клапанов. Переход к прогнозированию отказов при использовании программы FIELD CARE.

4.2. Программа медиум. «Модули регулирования». Переход к комплексной оценке контуров регулирования по узлам с учетом работоспособности как клапанов, арматуры, так и КИП и А. Ведение паспорта, разработка критериев оптимизации, увеличение межремонтных и межповерочных сроков на основе прогнозирования надежности и безотказной работы. Полное внедрение программы диагностики FIELD CARE. Увеличение использования цифровых позиционеров на критических контурах регулирования.

4.3. Программа максимум. «Рост эксплуатационной готовности». Предварительный этап – улучшение качества инструментального воздуха. Внедрение программы повышения метрологической надежности для критических контуров регулирования. Поэтапная модернизация регулирующих сопряженных контуров с целью увеличения метрологической надежности. Замена пневматических и электропневматических позиционеров и установка цифровых позиционеров с возможностью самодиагностики. Полномасштабное использование программы FIELD CARE. Переход от ремонта по состоянию на ремонт по диагностике. Получение максимального эффекта при включении в проекты модернизаций и инвестпроекты. Перерасчет и замена клапанов других производителей на клапаны НЕЛЕС. Формирование обменного фонда и консигнационного склада. Аудит клапанов, унификация и стандартизация клапанов. Переход к дистанционной диагностике. Общее повышение эксплуатационной готовности. Внедрение сервисных программ, снижение незапланированных остановов, рост межремонтных сроков, отслеживание трендов производства, технологии и улучшение использования активов. Рамочные договора на сервисное обслуживание. Фиксирование цен на работы, предсказуемость финансовых показателей ремонтов.

4.4. Программа «цифровое предприятие». Производится на базе 3-го этапа. Интеллектуализация клапанного хозяйства. Внедрение и использование беспроводной связи. Повышение надежности и гарантий. Внедрение модульного принципа восстановления и модернизации клапанов, приводов и позиционеров. Внешнее аутсорсинговое сервисное обслуживание клапанов.

2.4. Критические контуры регулирования ТЭС

Не все контуры одинаковы. Это является важным для понимания существенности замены одних клапанов на более совершенные. Критическими контурами регулирования назовем контуры, где соотношение параметров на входе к параметрам на выходе превышает критическое значение. Небольшая погрешность регулирования на входе приводит к недопустимому превышению допусков по параметру на выходе. Рассмотрим основные контуры регулирования на ТЭС.

Целью работы ТЭС является отпуск теплового агента в виде пара или горячей воды с определенными параметрами расхода, температуры, а также обеспечение тепловодяного баланса. Дополнительными требованиями являются: само качество воды, степень ее жесткости и насыщенность неконденсирующимися газами.

В работе ТЭС возникает множество возмущающих воздействий, от изменения погодных условий при работе на обогрев, до особенностей изменения работы теплопотребляющих агрегатов. Основными показателями, характеризующими технологический режим ТЭС, являются температура Т, напор Н и расход Q теплового агента. Основным оборудованием с точки зрения регулирования являются:

– Котлы, иногда их может быть несколько, работающих параллельно.

– Сетевые насосы, обеспечивающие циркуляцию теплового агента.

– Рециркуляционные насосы в линии рециркуляции воды от выхода с котлов на их вход.

– Регулирующий клапан линии перепуска, подающий воду с выхода сетевых насосов непосредственно в напорный трубопровод с предварительным смешиванием с горячей водой после котлов.

– Регулирующий клапан линии рециркуляции.

– Насос подпитки в линии подпитки, обеспечивающий стабильное давление в обратном трубопроводе путем восполнения потерь теплового агента за счет подачи деаэрированной воды.

– Дополнительными контурами являются контуры химводоочистки и водоподготовки, деаэрирования, подачи реагентов, удаления стоков, золоудаления, мазута и др.

Основных задач регулирования – две. Это регулирование выходных параметров пара и воды для потребителей и регулирование собственного тепловодяного баланса ТЭС. Для решения первой задачи регулируются выходные параметры – Твых, Нвых, Qвых, в обратном трубопроводе Тобр, Нобр, Qобр. Для решения второй задачи регулирования и обеспечения тепловодяного баланса регулируют следующие параметры:

Qк – расход воды через включенные котлы, что обеспечивает допустимый диапазон расходов через них.

Твх – температуру воды на входе в котлы с целью предотвращения образования конденсата на наружных поверхностях водяных труб внутри топок, так как конденсат является агрессивным.

Нобр – давление воды в обратном трубопроводе.

Структура контура регулирования может зависеть как от структуры самого объекта, так и от требований, предъявляемых к быстродействию в переходных режимах и точности в статических режимах.

В тоже время технологическую схему ТЭС можно представить в виде взаимосвязанных локальных контуров регулирования, где объект регулирования представляется апериодическим звеном со значительной нелинейностью и большими постоянными времени. Выделим основные контуры регулирования ТЭС:


1. Контур регулирования температуры в напорном трубопроводе ТЭС

Включает в себя котел, коэффициент передачи которого по нагреву и постоянным времени является переменными величинами, поскольку при разном числе параллельно работающих котлов температура в общем выходном коллекторе котлов Тк изменяется непропорционально управляющему воздействию. Например, при одном котле ПТВМ 50 включение одной горелки увеличивает Тк примерно на 4оС с общим времени регулирования 4-5 мин, а при двух котлах – на значительно меньшее значение за счет большего суммарного расхода воды в общем коллекторе.

Результирующая температура воды в сети Тс зависит от долевых значений расходов воды после котла Тк и обратной воды Тобр. Дополнительно учитывается функция смешения потоков воды, определяющая изменение температуры на разнице температур в обратном трубопроводе. В общем случае, она должна отражать также колебательность в упругой среде. Для датчика температуры главным фактором служит его собственная постоянная времени Тдат, составляющая до 10 сек.

Нагрузка ТЭС от теплопотребляющих агрегатов может быть описана передаточной функцией охлаждения теплового агента. Она также не линейна, если за возмущающее воздействие принять изменение температуры в теплопотребляющем агрегате и расход теплового агента, зависящий как от Тнагр и расхода. Постоянную времени охлаждения Тохл можно ориентировочно принимать 10-40 мин, но в каждом конкретном случае она зависит от протяженности и конфигурации теплопотребления и расхода теплового агента.


2. Контур регулирования напора на выходе с ТЭС

Контур регулирования напора Нвых можно представить в виде двух апериодических звеньев – сетевого насоса и гидравлических сопротивлений котлов и параллельной им линии перепуска. Обе передаточные функции будут нелинейны. Функции содержат квадратичную зависимость напора от частоты вращения. Постоянная времени Т определяется технологическими требованиями из условия плавного регулирования, ее значение составляет до 5 сек. Функция гидросопротивления нелинейна вследствие изменяющегося сопротивления в зависимости от угла открытия клапана линии перепуска. Динамические процессы узла смешения характеризуются очень малыми постоянными времени сжатия жидкой среды и по сравнению с другими показателями регулирования при синтезе регуляторов ими можно пренебречь, т.е. считать функцию пропорциональной.


3. Контур регулирования давления в обратном трубопроводе

Контур предназначен для восполнения утечек теплового агента (подпитки сети). Его передаточная функция по управляющему воздействию нелинейна по той же причине, что и для сетевого насоса – вследствие квадратичной взаимозависимости напора и частоты вращения электропривода. Коэффициент передачи Кобр также зависит от температуры, влияющей на давление в замкнутом трубопроводе с постоянным объемом воды. Возмущающим воздействием на Нобр является также давление в напорном трубопроводе Н. В стационарном режиме внешние возмущающие воздействия приводят к медленным процессам изменения давления, длительность которых измеряется минутами.

 

4. Контур регулирования температуры воды на входе в котлы

Передаточные функции этого контура отражают гидравлические процессы в узле соединения трубопроводов. Расход в линии рециркуляции Qрец и разность напоров Нрец и Нс связаны нелинейной функцией Фгидр, содержащей изменяющееся общее гидравлическое сопротивление параллельно включаемым котлам. В общем случае эта функция – колебательная с быстрым затуханием процесса.

Температура воды на входе в котлы Твх является функцией смешения двух потоков жидкости с разной температурой. Функция смешения одновременно зависит и от объемов потоков и от изменяющихся независимо одна от другой их температур Тк и Тобр, что свидетельствует о неопределенной нелинейности. Как и в случае измерения температуры сетевой воды и постоянной времени, наиболее влияющей на процесс регулирования является постоянная датчика температуры, составляющая примерно 10 сек.

Исполнительным механизмом служит рециркуляционный насос с регулирующим клапаном или регулируемым электроприводом. Он является апериодическим звеном с постоянной времени примерно 3-5 сек, устанавливаемой преднамеренно для исключения резких изменений суммы расходов Q.


5. Контур регулирования расхода воды через котлы

Контур включает в себя регулирующий клапан с нелинейной функцией, определяющей расход в зависимости от угла открытия и перепада давления на его входе и выходе, определяемой из паспортных характеристик, а также функцией интегрирования угла открытия по управляющему воздействию. Как правило, длительность полного открытия клапана составляет примерно 63 сек, т.е. постоянная времени составляет примерно 20 сек. Именно эта постоянная является определяющей и учитывается при построении системы регулирования. Для обеспечения устойчивости и исключения колебательности внешнего контура необходимо встраивать внутренний контур регулирования угла открытия клапана со своей передаточной функцией Фрег.

Из анализа следует, что все объекты локальных контуров связаны между собой и являются нелинейными, а постоянные времени передаточных функций некоторых из них определяются собственными постоянными времени исполнительных механизмов.

Зачастую трудно определить прямые показатели состояния теплопотребляющих объектов, пригодных для задачи регулирования выходных показателей регулирования ТЭС. Тем не менее, можно принять, что наиболее приемлемым способом регулирования будет упреждающее изменение выходных показателей ТЭС.

Обычно для регулирования применяют изменение числа включенных горелок, котлов, сетевых насосов. Вследствие нелинейности объекта регулирования и значительных постоянных времени апериодических звеньев такой способ на практике реализуется с помощью режимных карт и температурных графиков, составленных на основе опыта многолетней эксплуатации.


6. Контур регулирования температуры сетевой воды

При построении САУ температуры сетевой воды используется проверенный практикой способ управления – задание на температуру формируется по основному возмущающему воздействию Твозм и линеаризованному температурному графику, заложенному в АСУТП.


7. Контур регулирования давления воды в напорном трубопроводе

Контур предназначен для стабилизации напора Нс независимо от расхода в теплопотребляющем агрегате, температуры или других характеристик. При этом необходима стабилизация перепада давления в напорном и обратном трубопроводе, но давление в обратном трубопроводе стабилизируется самостоятельным контуром регулирования, поэтому, с целью исключения колебательности, целесообразно осуществлять регулирование по величине Нс.

В процессе работы ТЭС формируется практически стационарный процесс с медленно изменяющимися характеристиками, поэтому требование быстродействия пока не учитывается (за исключением устройств аварийной отсечки). Инструкциями по эксплуатации рекомендуется плавное, пошаговое воздействие на регулируемые показатели с визуальным контролем результатов. Это обусловлено как динамическими свойствами запорно-регулирующей арматуры, полное время изменения состояния которой по критерию «открыто-закрыто» составляет десятки секунд, так и порядком ввода в работу насосного оборудования – пуск на закрытую задвижку и последующее ее открытие. К контурам и системе регулирования в целом дополнительно предъявляются следующие требования:

– Отработка управляющих и возмущающих воздействий без перерегулирования, отсутствие колебаний или их быстрое затухание.

– Окончание колебательного процесса с установлением новых заданных показателей за время, удобное для визуального контроля (до 5 мин).

В этих условиях передаточной функцией обычно выбирают для регуляторов всех контуров регулирования пропорционально-интегрирующее или интегрирующее звено, с предпочтением интегрирующему звену, поскольку нет необходимости в компенсации постоянных времени объекта регулирования. Регулирование без статической ошибки является важным условием функционирования теплопотребляющих агрегатов. При наладке регуляторов и выборе параметров регуляторов ориентируются на наибольшую постоянную времени объекта в контуре регулирования.


ПОРЯДОК ВЫБОРА КЛАПАНОВ ДЛЯ КРИТИЧЕСКИХ КОНТУРОВ РЕГУЛИРОВАНИЯ

Выбор клапанов основывается на анализе критических контуров регулирования в соответствии с технологической схемой и проводится в следующей последовательности:

1. По результатам анализа технологической схемы выделяются контуры, где небольшие изменения параметров на входе приводят к непропорционально большому или малому изменению параметров на выходе. Эти контуры рассматриваются отдельно, и для них производится специальный выбор клапанов, способных работать в таких условиях.

2. Клапаны для этих контуров рассчитываются по специализированной программе расчета типа CONVAL или NELPROF (Metso Automation).

3. Далее проводится их оптимизация для конкретных контуров регулирования в соответствии с особенностями работы контура и заданием от системы АСУТП.


ТИПОВЫЕ СРЕДЫ В ЭНЕРГЕТИКЕ. ПРОБЛЕМЫ РЕГУЛИРОВАНИЯ ДВУХФАЗНЫХ ПОТОКОВ

Выбор регулирующих клапанов для многофазных потоков не является такой же хорошо проработанной и легкой задачей как расчет и выбор клапанов для однофазных потоков. Расчет регулирующих клапанов для чистых жидкостей или потока газа может быть сделан с использованием стандартных расчетных формул, основанных на динамике потока и относительных коэффициентов, применяемых при выборе клапана.

Когда регулирующий клапан рассчитывается для двухфазного потока, которым обычно является смесь жидкости и пара, не существует общепринятых методов, которые бы достоверно решали бы эту задачу. Это связано с тем, что двухфазный поток не может быть описан в одно и тоже время математически просто и без погрешностей. Также при экспериментальных исследованиях требуется провести множество испытаний с различными видами процентных композиций и фракций по весу, с использованием различных типов клапанов. Невозможно рассчитывать клапан для многофазного потока с той же точностью, как и для однофазных потоков.

Многое зависит и от испытательной базы компании – производителя клапанов, его опыта работы в отрасли. К примеру, для получения достоверных результатов компанией METSO AUTOMATION проведено множество исследований по определению поведения потоков многофазных смесей, включая пароконденсатные смеси при их прохождении через регулирующие клапаны. В качестве результата были выведены методы расчета и выбора клапанов для многофазных потоков, применимые ко всем видами клапанов с поворотным затвором, производимых Mетсо.


Расчет двухфазного потока

Метод основан на теории гомогенного потока, который допускает, что жидкость и пар движутся с одинаковой скоростью и гомогенно смешаны. Метод может быть применен в следующих 2-х случаях двухфазного потока:

You have finished the free preview. Would you like to read more?