Read the book: «Научные исследования»
ВСТУПЛЕНИЕ
«Сегодня именно тот день, когда я могу написать свои теоремы и не прятать ни от кого то, к чему лежит моя душа. Сегодня я могу быть собой.»
Я с детства испытывала огромное пристрастие к науке. Учебе я уделяла все свое время. Из-за плохой, как мне казалось, памяти, но огромного желания все знать, я учила уроки до поздней ночи и без выходных. Меня нельзя было назвать ботаником, потому что я умела активно отдыхать, чтобы набраться новых сил.
Я родилась такой. В два года стремление скорее научиться читать было важнее игрушек. Уже тогда во мне зарождалась сильная любовь к математике. В младших классах после школы я писала математические теоремы, формулы и их доказательства мелом на доме. Мое родные считали, что я просто ухожу гулять, и мое занятие им жутко не нравилось. Я же просто хотела писать формулу за формулой так, как требовала душа.
Я учила больше, чем требовалось. Одним летом, когда все дети гуляли, будучи уже повзрослевшими, я каждый день с утра до ночи читала классику. Мне многое хотелось знать наизусть, и я очень печалилась, когда мой мозг что-то забывал. От переизбытка информации я могла не вспомнить имя одноклассника, да и вообще имена своих многочисленных друзей. Меня и любили, и ненавидели.
Для меня было важным знать каждый предмет на «отлично», но я могу сказать честно, я не испытывала ни разу ни с кем конкуренции. Для меня не было первых, потому что я занимала все позиции. На третьем курсе института меня приняли в ученый совет, правда, тогда я совсем не стремилась к этому, поэтому статус оказался для меня пустым местом.
Сегодня все страхи, насмешки и прочие комплексы остались позади. Я свободно могу писать научную книгу, веря, что она принесет пользу миру. Вначале я планировала написать книгу лишь с математическими теоремами, но потом поняла, что я слишком разносторонне развитый человек, чтобы делать акцент на чем-то одном. К сожалению, теоремы, которые я открывала в детстве, сейчас я вспомнить не смогла, поэтому написала новые.
Эта книга включает в себя мое научное видение математики, геометрии, физики, химии, биологии, астрономии, географии, истории, литературы, искусства, спорта, медицины, психология, философии, религии, политики, экономики и дипломатии. В ней собраны мои теоремы, формулы, научные рассуждения, понятия и доказательства к ним. Я начинала писать книгу в очень большом объеме, с многословными рассуждениями и многочисленными примерами, но потом я решила сузить объем до минимума и привести лишь по одному примеру.
Спасибо Богу. Спасибо Божьей матери.
Глава 1
МАТЕМАТИКА
Теорема 1. Произведение n-го количество Х всегда равно произведению n-го количеству других Х, если мы имеем возможность вычислить хотя бы одно Х при некотором числе L.
Х1*Х2*Х3*Хn-1=X4*X5*Xn, при числе L=Хn-Хn-1
Доказательство:
Вычислим одно из Х, пусть это будет Х1
Х1=Х4*Х5/Х2*Х3, при L=(Х4+Х5)-(Х2+Х3)
Пусть Х2=1, Х3=2, Х4=3, Х5=4, тогда Х1=3*4/1*2=6
Полученный расчет в виде формулы: 6*1*2=3*4, при L=(3+4)-(1+2)=4
Пример. Учитель купил 2 альбома, при этом в его классе 32 ученика. Сколько не хватает альбомов, чтобы раздать их каждому ученику?
Решение: Х2=2, Х3=32, Х1-?
Х1*Х2=Х3, при L=Х3-Х2. Тогда Х1=Х3/Х2=32/2=16
В виде формулы: 16*2=32, при L=32-2=30
Ответ: Чтобы раздать каждому ученику альбом, необходимо купленное количество альбомов увеличить в 16 раз, то есть закупить еще 30 штук.
Теорема 2. Произведение n чисел определяет некое число L с вероятностью +/– число N (количество n). Причем разница между плюсовым и минусовым выражением значения L+/– N составляет 2N.
И наоборот, произведение n чисел определяет некое число L, которое вычисляется от числа N (количество n) с вероятностью +/- . Причем разница между плюсовым и минусовым выражением значения N+/– L составляет N+K, где K=Z-N при условии, что N не равно L.
Z=(Х1*Х2*Хn=L+N)-(Х1*Х2*Хn=L-N)=2N, и наоборот
Z=(Х1*Х2*Хn=N+L)-(Х1*Х2*Хn=N-L)=N+K (при K=Z-N, N не равно L)
Доказательство:
Обозначим Х1=1, Х2=2, пусть число N=2
Подставив значения в формулы:
Z=Х1*Х2=L+N, получим Z=1*2=3+2=5,
Z=Х1*Х2*Хn=L-N, получим Z=1*2=3-2=1.
Следовательно, Z=Z1-Z2=5-1=4 и 4=2N, где N по условию было 2
Подставим значения в общую формулу: Z=(1*2=3+3)-(1*2=3-3)=2*3, то есть 2N
И наоборот, при тех же значениях, где N не равно L, подставим значения в общую формулу Z=(Х1*Х2*Хn=N+L)-(Х1*Х2*Хn=N-L)=N+K, где К=Z-N
Z=(1*2=2+3)-(1*2=2-3) =5-(-1)=6=2+4, то есть N+K
Пример. У Славы было 4 карандаша, Никиты 2, Данилы 7, Маши 2. У скольких ребят были карандаши?
Решение: Х1=4, Х2=2, Х3=7, Х4=2, доказать что N=4
Z=(4*2*7*2=112+4)-(4*2*7*2=112-4)=8=2*4, что доказывает теорему, т.к. Z=2N
Рассмотрим наоборот:
Z=(4*2*7*2=4+112)-(4*2*7*2=4-112)=224=4+220 (где N не равно L), то есть у 4 ребят при некотором числе L=220
Ответ: У 4 ребят были карандаши.
Теорема 3. Произведение Хn чисел равно значение NХ, где N – некое число, Х – общее значение произведения Хn.
Х1*Х2*Хn=NX
Доказательство:
Пусть Х1=1, Х2=2, то Х1*Х2=1*2=2
Число 2 в свою очередь можно представить в выражении NX, то есть 1*2 (где N=1, а Х=2) или 2*1, а можно и 0,5*4 или 4*0,5 и тд.
Следовательно, Х1*Х2*Хn действительно имеет равенство NX. Если мы будем знать Х1, Х2 и N, то сможем вычислить общее значение Х.
Пример. В класс привезли 2 парты и 3 стула для 4 учеников. Сколько парт было укомплектовано, если учесть, что за 1 партой сидят 2 ученика.
Решение: Х1=2 (парты), Х2=3 (стула), N=4 (человек), Х-?
Подставим значения в формулу: Х1*Х2*Хn=NX, получим 2*3=4Х
Вычислим Х=2*3/4=1,5 (укомплектовано парт)
Ответ: В классе было укомплектовано 1,5 парты, то есть 3 ученика могли занять свои места.
Теорема 4. Любое свободное число Х имеет вероятность равняться другому свободному числу Х, где одно из Х состоит из сумм Хn, образуя в дополнении свободное число L.
Х1=Х2+Х3+Хn, где Х3+Хn=L
Доказательство:
Пусть Х1=5, Х2=10. Подставим значения в формулу, где представим, что 10=5+5, то 5=5+5, где L=5
Пример. У девочки было 10 конфет, через три дня у нее осталось 7. Сколько съела конфет за три дня девочка?
Решение: Х1=10, Х2=7, L-?
Подставим значения в формулу Х1=Х2+Х3+Хn, получим 10=7+3, где L=3
Ответ: За три дня девочка съела 3 конфеты.
Теорема 5. Одно некое меньшее число равно другому большему числу и наоборот. А также числа равны между собой, если имеют одинаковое значение.
Х1=Х2, при этом Х1>или<Х2
Доказательство:
Пусть Х1=1, Х2=1 млн., то 1=1 млн., где 1=1 млн
Пример. В России в 2016 году 2 млн. детей получили путевки в лагеря. Для кого были представлены путевки?
Решение: Х1=1 (ребенок), Х2=2 млн. (путевки), вероятность получения путевки?
Подставим значения в формулу Х1=Х2, получим 1=2 млн.
Ответ: Путевки были предоставлены для человека с вероятностью ее получения 1 к 2 млн.
Теорема 6. Ноль имеет отличное от нуля значение, если был получен путем умножения числа Ln на ноль. Именно число Ln и есть значение отличное от 0.
0= Ln*0, где Ln – любое число или произведение чисел
Доказательство:
Пусть L=5*6, тогда 0=5*6*0 и получаем 0=0, значит ранее было значение 5*6
Пример. Катя съела 4 яблока и 7 апельсинов. Сколько у нее было яблок и апельсинов?
Решение: L1=4, L2=7, L-?
Подставим значения в формулу 0= Ln*0, получим: 0=4*7*0, где L=4*7
Ответ: У Кати было 4 яблока и 7 апельсинов.
Теорема 7. Бесконечное число М убирает из расчета появление числа L, что невозможно и поэтому любая бесконечность, имеет конец N.
М1*M2*Mn*L=N
Доказательство:
Пусть M1=1, М2=100, Mn=бесконечность, L=0. Подставив в формулу М1*M2*Mn*L=N данные значения, получаем 1*100*…*0=0. Число L определило конец бесконечности, равный 0.
Пример. У мальчика было много карандашей и одна ручка. Он пересчитал карандаши и обнаружил, что у него 140 карандашей. Какую бесконечность карандашей мальчик имела до подсчета?
Решение: M1=бесконечность, N=140, бесконечность -?
Согласно формуле М1*M2*Mn*L=N получаем бесконечность*L=140
Ответ: До подсчета мальчик имел бесконечность карандашей в количестве 140 штук при неизвестной величине L.
Теорема 8. Любое ошибочное число Х не подлежит исправлению, потому что за ним следует число Y. Ошибочное число Х принимается произошедшим, а значит явным. Правка числа Х не приведет к верному решению.
X*У =Т, где Т – решение
Доказательство:
Пусть Х=2, У=3, тогда подставив значения в формулу X*У =Т, получаем 2*3=6. Таким образом мы определили, что Т=6. Поменяем значение Х=3, тогда 3*3=9, где Т=9. В первом случае Т имело другое значение, чем во втором. Таким образом, ошибочное число Х не подлежит исправлению.
Пример. Наташа купила 5 яблок, одно из которых съела по дороге домой. Сколько принесла бы домой яблок Наташа, если бы она не съела одно яблоко?
Решение: Х=5, У=1-1. Во втором случае Х=5, У=1, Т-?
Подставим значения в формулу X*У =Т, получим в первом случае 5*1-1=4, а во втором 5*1=5
Ответ: Если бы Наташа не съела одно яблоко, то она принесла бы домой 5 яблок.
Теорема 9. Любое число А позволяет использовать счет В, но у любого числа и счета есть некая характеристика N.
А*N=В*N
Доказательство:
Пусть А=2, N=5. Определяя число В по формуле А*N=В*N, получим 2*5=?*5. Значит счет В как и число А имеет значение равное 2.
Пример. У Алены остался один мяч, в то время как второй мяч она отдала Коле. Сколько у ребят было мячей?
Решение: А=1, В=1, A+B-?
Подставим значения в формулу А*N=В*N, получим 1*N=1*N, где N – это Алена и Коля. Тогда 1N+1N=2N.
Ответ: У ребят было два мяча.
Теорема 10. Число, увеличенное (уменьшенное) во много раз всегда имело свое первоначальное значение, которое потребовалось другому числу увеличить (уменьшить).
A=A*M=B или А=А:М=В, где А – число, М – много раз, В – другое число
Доказательство:
Пусть А первоначально равнялось 2. Увеличив число А в пять раз, согласно формуле A=A*M=B мы получим 2=2*5=10. И наоборот.
Пусть А=4. Уменьшив число А в два раза, согласно формуле A=A*M=B мы получим 4=4:2=2.
Следовательно, число А путем увеличение (уменьшения) привело нас к числу В.
Пример. После дня рождения у Ромы было 10 машинок. Сколько первоначально было машинок у Ромы?
Решение: В=10, М – неизвестно, А-?
Подставим значения в формулу A=A*/M=B и получим А=А*/М=10. Не зная данных по увеличению или уменьшению машинок, мы не можем узнать первоначальное количество машинок.
Ответ: Мы не можем узнать первоначальное количество машинок.
The free excerpt has ended.