Free

Novum Organum

Text
iOSAndroidWindows Phone
Where should the link to the app be sent?
Do not close this window until you have entered the code on your mobile device
RetryLink sent

At the request of the copyright holder, this book is not available to be downloaded as a file.

However, you can read it in our mobile apps (even offline) and online on the LitRes website

Mark as finished
Font:Smaller АаLarger Aa

Again, let the required nature be the corporeal substance of the moon, whether it be rare, fiery, and aërial (as most of the ancient philosophers have thought), or solid and dense (as Gilbert and many of the moderns, with some of the ancients, hold).132 The reasons for this latter opinion are grounded chiefly upon this, that the moon reflects the sun’s rays, and that light does not appear capable of being reflected except by solids. The instances of the cross will therefore (if any) be such as to exhibit reflection by a rare body, such as flame, if it be but sufficiently dense. Now, certainly, one of the reasons of twilight is the reflection133 of the rays of the sun by the upper part of the atmosphere. We see the sun’s rays also reflected on fine evenings by streaks of moist clouds, with a splendor not less, but perhaps more bright and glorious than that reflected from the body of the moon, and yet it is not clear that those clouds have formed into a dense body of water. We see, also, that the dark air behind the windows at night reflects the light of a candle in the same manner as a dense body would do.134 The experiment should also be made of causing the sun’s rays to fall through a hole upon some dark and bluish flame. The unconfined rays of the sun, when falling on faint flames, do certainly appear to deaden them, and render them more like white smoke than flames. These are the only instances which occur at present of the nature of those of the cross, and better perhaps can be found. But it must always be observed that reflection is not to be expected from flame, unless it be of some depth, for otherwise it becomes nearly transparent. This at least may be considered certain, that light is always either received and transmitted or reflected by an even surface.

Again, let the required nature be the motion of projectiles (such as darts, arrows, and balls) through the air. The school, in its usual manner, treats this very carelessly, considering it enough to distinguish it by the name of violent motion, from that which they term natural, and as far as regards the first percussion or impulse, satisfies itself by its axiom, that two bodies cannot exist in one place, or there would be a penetration of dimensions. With regard to this nature we have these two crossways – The motion must arise either from the air carrying the projected body, and collecting behind it, like a stream behind boats, or the wind behind straws; or from the parts of the body itself not supporting the impression, but pushing themselves forward in succession to ease it. Fracastorius, and nearly all those who have entered into any refined inquiry upon the subject, adopt the first. Nor can it be doubted that the air has some effect, yet the other motion is without doubt real, as is clear from a vast number of experiments. Among others we may take this instance of the cross, namely, that a thin plate or wire of iron rather stiff, or even a reed or pen split in two, when drawn up and bent between the finger and thumb, will leap forward; for it is clear that this cannot be attributed to the air’s being collected behind the body, because the source of motion is in the centre of the plate or pen, and not in its extremities.

Again, let the required nature be the rapid and powerful motion of the explosion of gunpowder, by which such vast masses are upheaved, and such weights discharged as we observe in large mines and mortars, there are two crossways before us with regard to this nature. This motion is excited either by the mere effort of the body expanding itself when inflamed, or by the assisting effort of the crude spirit, which escapes rapidly from fire, and bursts violently from the surrounding flame as from a prison. The school, however, and common opinion only consider the first effort; for men think that they are great philosophers when they assert that flame, from the form of the element, is endowed with a kind of necessity of occupying a greater space than the same body had occupied when in the form of powder, and that thence proceeds the motion in question. In the meantime they do not observe, that although this may be true, on the supposition of flame being generated, yet the generation may be impeded by a weight of sufficient force to compress and suffocate it, so that no such necessity exists as they assert. They are right, indeed, in imagining that the expansion and the consequent emission or removal of the opposing body, is necessary if flame be once generated, but such a necessity is avoided if the solid opposing mass suppress the flame before it be generated; and we in fact see that flame, especially at the moment of its generation, is mild and gentle, and requires a hollow space where it can play and try its force. The great violence of the effect, therefore, cannot be attributed to this cause; but the truth is, that the generation of these exploding flames and fiery blasts arises from the conflict of two bodies of a decidedly opposite nature – the one very inflammable, as is the sulphur, the other having an antipathy to flame, namely, the crude spirit of the nitre; so that an extraordinary conflict takes place while the sulphur is becoming inflamed as far as it can (for the third body, the willow charcoal, merely incorporates and conveniently unites the two others), and the spirit of nitre is escaping, as far also as it can, and at the same time expanding itself (for air, and all crude substances, and water are expanded by heat), fanning thus, in every direction, the flame of the sulphur by its escape and violence, just as if by invisible bellows.

Two kinds of instances of the cross might here be used – the one of very inflammable substances, such as sulphur and camphor, naphtha and the like, and their compounds, which take fire more readily and easily than gunpowder if left to themselves (and this shows that the effort to catch fire does not of itself produce such a prodigious effect); the other of substances which avoid and repel flame, such as all salts; for we see that when they are cast into the fire, the aqueous spirit escapes with a crackling noise before flame is produced, which also happens in a less degree in stiff leaves, from the escape of the aqueous part before the oily part has caught fire. This is more particularly observed in quicksilver, which is not improperly called mineral water, and which, without any inflammation, nearly equals the force of gunpowder by simple explosion and expansion, and is said, when mixed with gunpowder, to increase its force.

Again, let the required nature be the transitory nature of flame and its momentaneous extinction; for to us the nature of flame does not appear to be fixed or settled, but to be generated from moment to moment, and to be every instant extinguished; it being clear that those flames which continue and last, do not owe their continuance to the same mass of flame, but to a continued succession of new flame regularly generated, and that the same identical flame does not continue. This is easily shown by removing the food or source of the flame, when it at once goes out. We have the two following crossways with regard to this nature:

This momentary nature either arises from the cessation of the cause which first produced it, as in light, sounds, and violent motions, as they are termed, or flame may be capable, by its own nature, of duration, but is subjected to some violence from the contrary natures which surround it, and is destroyed.

We may therefore adopt the following instance of the cross. We see to what a height the flames rise in great conflagrations; for as the base of the flame becomes more extensive, its vertex is more lofty. It appears, then, that the commencement of the extinction takes place at the sides, where the flame is compressed by the air, and is ill at ease; but the centre of the flame, which is untouched by the air and surrounded by flame, continues the same, and is not extinguished until compressed by degrees by the air attacking it from the sides. All flame, therefore, is pyramidal, having its base near the source, and its vertex pointed from its being resisted by the air, and not supplied from the source. On the contrary, the smoke, which is narrow at the base, expands in its ascent, and resembles an inverted pyramid, because the air admits the smoke, but compresses the flame; for let no one dream that the lighted flame is air, since they are clearly heterogeneous.

 

The instance of the cross will be more accurate, if the experiment can be made by flames of different colors. Take, therefore, a small metal sconce, and place a lighted taper in it, then put it in a basin, and pour a small quantity of spirits of wine round the sconce, so as not to reach its edge, and light the spirit. Now the flame of the spirit will be blue, and that of the taper yellow; observe, therefore, whether the latter (which can easily be distinguished from the former by its color, for flames do not mix immediately, as liquids do) continue pyramidal, or tend more to a globular figure, since there is nothing to destroy or compress it. If the latter result be observed, it must be considered as settled, that flame continues positively the same, while inclosed within another flame, and not exposed to the resisting force of the air.

Let this suffice for the instances of the cross. We have dwelt the longer upon them in order gradually to teach and accustom mankind to judge of nature by these instances, and enlightening experiments, and not by probable reasons.135

XXXVII. We will treat of the instances of divorce as the fifteenth of our prerogative instances. They indicate the separation of natures of the most common occurrence. They differ, however, from those subjoined to the accompanying instances; for the instances of divorce point out the separation of a particular nature from some concrete substance with which it is usually found in conjunction, while the hostile instances point out the total separation of one nature from another. They differ, also, from the instances of the cross, because they decide nothing, but only inform us that the one nature is capable of being separated from the other. They are of use in exposing false forms, and dissipating hasty theories derived from obvious facts; so that they add ballast and weight, as it were, to the understanding.

For instance, let the acquired natures be those four which Telesius terms associates, and of the same family, namely, heat, light, rarity, and mobility, or promptitude to motion; yet many instances of divorce can be discovered between them. Air is rare and easily moved, but neither hot nor light; the moon is light but not hot; boiling water is warm but not light; the motion of the needle in the compass is swift and active, and yet its substance is cold, dense, and opaque; and there are many similar examples.

Again, let the required natures be corporeal nature and natural action. The latter appears incapable of subsisting without some body, yet may we, perhaps, even here find an instance of divorce, as in the magnetic motion, which draws the iron to the magnet, and heavy bodies to the globe of the earth; to which we may add other actions which operate at a distance. For such action takes place in time, by distinct moments, not in an instant; and in space, by regular degrees and distances. There is, therefore, some one moment of time and some interval of space, in which the power or action is suspended between the two bodies creating the motion. Our consideration, then, is reduced to this, whether the bodies which are the extremes of motion prepare or alter the intermediate bodies, so that the power advances from one extreme to the other by succession and actual contact, and in the meantime exists in some intermediate body; or whether there exists in reality nothing but the bodies, the power, and the space? In the case of the rays of light, sounds, and heat, and some other objects which operate at a distance, it is indeed probable that the intermediate bodies are prepared and altered, the more so because a qualified medium is required for their operation. But the magnetic or attractive power admits of an indifferent medium, and it is not impeded in any. But if that power or action is independent of the intermediate body, it follows that it is a natural power or action existing in a certain time and space without any body, since it exists neither in the extreme nor in the intermediate bodies. Hence the magnetic action may be taken as an instance of divorce of corporeal nature and natural action; to which we may add, as a corollary and an advantage not to be neglected, that it may be taken as a proof of essence and substance being separate and incorporeal, even by those who philosophize according to the senses. For if natural power and action emanating from a body can exist at any time and place entirely without any body, it is nearly a proof that it can also emanate originally from an incorporeal substance; for a corporeal nature appears to be no less necessary for supporting and conveying, than for exciting or generating natural action.

XXXVIII. Next follow five classes of instances which we are wont to call by the general term of instances of the lamp, or of immediate information. They are such as assist the senses; for since every interpretation of nature sets out from the senses, and leads, by a regular fixed and well-established road, from the perceptions of the senses to those of the understanding (which are true notions and axioms), it necessarily follows, that in proportion as the representatives or ministerings of the senses are more abundant and accurate, everything else must be more easy and successful.

The first of these five sets of instances of the lamp, strengthen, enlarge, and correct the immediate operations of the senses; the second reduce to the sphere of the senses such matters as are beyond it; the third indicate the continued process or series of such things and motions, as for the most part are only observed in their termination, or in periods; the fourth supply the absolute wants of the senses; the fifth excite their attention and observation, and at the same time limit the subtilty of things. We will now proceed to speak of them singly.

XXXIX. In the sixteenth rank, then, of prerogative instances, we will place the instances of the door or gate, by which name we designate such as assist the immediate action of the senses. It is obvious, that sight holds the first rank among the senses, with regard to information, for which reason we must seek principally helps for that sense. These helps appear to be threefold, either to enable it to perceive objects not naturally seen, or to see them from a greater distance, or to see them more accurately and distinctly.

We have an example of the first (not to speak of spectacles and the like, which only correct and remove the infirmity of a deficient sight, and therefore give no further information) in the lately invented microscopes, which exhibit the latent and invisible minutiæ of substances, and their hidden formation and motion, by wonderfully increasing their apparent magnitude. By their assistance we behold with astonishment the accurate form and outline of a flea, moss, and animalculæ, as well as their previously invisible color and motion. It is said, also, that an apparently straight line, drawn with a pen or pencil, is discovered by such a microscope to be very uneven and curved, because neither the motion of the hand, when assisted by a ruler, nor the impression of ink or color, are really regular, although the irregularities are so minute as not to be perceptible without the assistance of the microscope. Men have (as is usual in new and wonderful discoveries) added a superstitious remark, that the microscope sheds a lustre on the works of nature, and dishonor on those of art, which only means that the tissue of nature is much more delicate than that of art. For the microscope is only of use for minute objects, and Democritus, perhaps, if he had seen it, would have exulted in the thought of a means being discovered for seeing his atom, which he affirmed to be entirely invisible. But the inadequacy of these microscopes, for the observation of any but the most minute bodies, and even of those if parts of a larger body, destroys their utility; for if the invention could be extended to greater bodies, or the minute parts of greater bodies, so that a piece of cloth would appear like a net, and the latent minutiæ and irregularities of gems, liquids, urine, blood, wounds, and many other things could be rendered visible, the greatest advantage would, without doubt, be derived.

We have an instance of the second kind in the telescope, discovered by the wonderful exertions of Galileo; by the assistance of which a nearer intercourse may be opened (as by boats or vessels) between ourselves and the heavenly objects. For by its aid we are assured that the Milky Way is but a knot or constellation of small stars, clearly defined and separate, which the ancients only conjectured to be the case; whence it appears to be capable of demonstration, that the spaces of the planetary orbits (as they are termed) are not quite destitute of other stars, but that the heaven begins to glitter with stars before we arrive at the starry sphere, although they may be too small to be visible without the telescope. By the telescope, also, we can behold the revolutions of smaller stars round Jupiter, whence it may be conjectured that there are several centres of motion among the stars. By its assistance, also, the irregularity of light and shade on the moon’s surface is more clearly observed and determined, so as to allow of a sort of selenography.136 By the telescope we see the spots in the sun, and other similar phenomena; all of which are most noble discoveries, as far as credit can be safely given to demonstrations of this nature, which are on this account very suspicious, namely, that experiment stops at these few, and nothing further has yet been discovered by the same method, among objects equally worthy of consideration.

We have instances of the third kind in measuring-rods, astrolabes, and the like, which do not enlarge, but correct and guide the sight. If there be other instances which assist the other senses in their immediate and individual action, yet if they add nothing further to their information they are not apposite to our present purpose, and we have therefore said nothing of them.

 

XL. In the seventeenth rank of prerogative instances we will place citing instances (to borrow a term from the tribunals), because they cite those things to appear, which have not yet appeared. We are wont also to call them invoking instances, and their property is that of reducing to the sphere of the senses objects which do not immediately fall within it.

Objects escape the senses either from their distance, or the intervention of other bodies, or because they are not calculated to make an impression upon the senses, or because they are not in sufficient quantity to strike the senses, or because there is not sufficient time for their acting upon the senses, or because the impression is too violent, or because the senses are previously filled and possessed by the object, so as to leave no room for any new motion. These remarks apply principally to sight, and next to touch, which two senses act extensively in giving information, and that too upon general objects, while the remaining three inform us only, as it were, by their immediate action, and as to specific objects.

There can be no reduction to the sphere of the senses in the first case, unless in the place of the object, which cannot be perceived on account of the distance, there be added or substituted some other object, which can excite and strike the sense from a greater distance, as in the communication of intelligence by fires, bells, and the like.

In the second case we effect this reduction by rendering those things which are concealed by the interposition of other bodies, and which cannot easily be laid open, evident to the senses by means of that which lies at the surface, or proceeds from the interior; thus the state of the body is judged of by the pulse, urine, etc.

The third and fourth cases apply to many subjects, and the reduction to the sphere of the senses must be obtained from every quarter in the investigation of things. There are many examples. It is obvious that air, and spirit, and the like, whose whole substance is extremely rare and delicate, can neither be seen nor touched – a reduction, therefore, to the senses becomes necessary in every investigation relating to such bodies.

Let the required nature, therefore, be the action and motion of the spirit inclosed in tangible bodies; for every tangible body with which we are acquainted contains an invisible and intangible spirit, over which it is drawn, and which it seems to clothe. This spirit being emitted from a tangible substance, leaves the body contracted and dry; when retained, it softens and melts it; when neither wholly emitted nor retained, it models it, endows it with limbs, assimilates, manifests, organizes it, and the like. All these points are reduced to the sphere of the senses by manifest effects.

For in every tangible and inanimate body the inclosed spirit at first increases, and as it were feeds on the tangible parts which are most open and prepared for it; and when it has digested and modified them, and turned them into spirit, it escapes with them. This formation and increase of spirit is rendered sensible by the diminution of weight; for in every desiccation something is lost in quantity, not only of the spirit previously existing in the body, but of the body itself, which was previously tangible, and has been recently changed, for the spirit itself has no weight. The departure or emission of spirit is rendered sensible in the rust of metals, and other putrefactions of a like nature, which stop before they arrive at the rudiments of life, which belong to the third species of process.137 In compact bodies the spirit does not find pores and passages for its escape, and is therefore obliged to force out, and drive before it, the tangible parts also, which consequently protrude, whence arises rust and the like. The contraction of the tangible parts, occasioned by the emission of part of the spirit (whence arises desiccation), is rendered sensible by the increased hardness of the substance, and still more by the fissures, contractions, shrivelling, and folds of the bodies thus produced. For the parts of wood split and contract, skins become shrivelled, and not only that, but, if the spirit be emitted suddenly by the heat of the fire, become so hastily contracted as to twist and roll themselves up.

On the contrary, when the spirit is retained, and yet expanded and excited by heat or the like (which happens in solid and tenacious bodies), then the bodies are softened, as in hot iron; or flow, as in metals; or melt, as in gums, wax, and the like. The contrary effects of heat, therefore (hardening some substances and melting others), are easily reconciled,138 because the spirit is emitted in the former, and agitated and retained in the latter; the latter action is that of heat and the spirit, the former that of the tangible parts themselves, after the spirit’s emission.

But when the spirit is neither entirely retained nor emitted, but only strives and exercises itself, within its limits, and meets with tangible parts, which obey and readily follow it wherever it leads them, then follows the formation of an organic body, and of limbs, and the other vital actions of vegetables and animals. These are rendered sensible chiefly by diligent observation of the first beginnings, and rudiments or effects of life in animalculæ sprung from putrefaction, as in the eggs of ants, worms, mosses, frogs after rain, etc. Both a mild heat and a pliant substance, however, are necessary for the production of life, in order that the spirit may neither hastily escape, nor be restrained by the obstinacy of the parts, so as not to be able to bend and model them like wax.

Again, the difference of spirit which is important and of effect in many points (as unconnected spirit, branching spirit, branching and cellular spirit, the first of which is that of all inanimate substances, the second of vegetables, and the third of animals), is placed, as it were, before the eyes by many reducing instances.

Again, it is clear that the more refined tissue and conformation of things (though forming the whole body of visible or tangible objects) are neither visible nor tangible. Our information, therefore, must here also be derived from reduction to the sphere of the senses. But the most radical and primary difference of formation depends on the abundance or scarcity of matter within the same space or dimensions. For the other formations which regard the dissimilarity of the parts contained in the same body, and their collocation and position, are secondary in comparison with the former.

Let the required nature then be the expansion or coherence of matter in different bodies, or the quantity of matter relative to the dimensions of each. For there is nothing in nature more true than the twofold proposition – that nothing proceeds from nothing and that nothing is reduced to nothing, but that the quantum, or sum total of matter, is constant, and is neither increased nor diminished. Nor is it less true, that out of this given quantity of matter, there is a greater or less quantity, contained within the same space or dimensions according to the difference of bodies; as, for instance, water contains more than air. So that if any one were to assert that a given content of water can be changed into an equal content of air, it is the same as if he were to assert that something can be reduced into nothing. On the contrary, if any one were to assert that a given content of air can be changed into an equal content of water, it is the same as if he were to assert that something can proceed from nothing. From this abundance or scarcity of matter are properly derived the notions of density and rarity, which are taken in various and promiscuous senses.

This third assertion may be considered as being also sufficiently certain; namely, that the greater or less quantity of matter in this or that body, may, by comparison, be reduced to calculation, and exact, or nearly exact, proportion. Thus, if one should say that there is such an accumulation of matter in a given quantity of gold, that it would require twenty-one times the quantity in dimension of spirits of wine, to make up the same quantity of matter, it would not be far from the truth.

The accumulation of matter, however, and its relative quantity, are rendered sensible by weight; for weight is proportionate to the quantity of matter, as regards the parts of a tangible substance, but spirit and its quantity of matter are not to be computed by weight, which spirit rather diminishes than augments.

We have made a tolerably accurate table of weight, in which we have selected the weights and size of all the metals, the principal minerals, stones, liquids, oils, and many other natural and artificial bodies: a very useful proceeding both as regards theory and practice, and which is capable of revealing many unexpected results. Nor is this of little consequence, that it serves to demonstrate that the whole range of the variety of tangible bodies with which we are acquainted (we mean tolerably close, and not spongy, hollow bodies, which are for a considerable part filled with air), does not exceed the ratio of one to twenty-one. So limited is nature, or at least that part of it to which we are most habituated.

We have also thought it deserving our industry, to try if we could arrive at the ratio of intangible or pneumatic bodies to tangible bodies, which we attempted by the following contrivance. We took a vial capable of containing about an ounce, using a small vessel in order to effect the subsequent evaporation with less heat. We filled this vial, almost to the neck, with spirits of wine, selecting it as the tangible body which, by our table, was the rarest, and contained a less quantity of matter in a given space than all other tangible bodies which are compact and not hollow. Then we noted exactly the weight of the liquid and vial. We next took a bladder, containing about two pints, and squeezed all the air out of it, as completely as possible, and until the sides of the bladder met. We first, however, rubbed the bladder gently with oil, so as to make it air-tight, by closing its pores with the oil. We tied the bladder tightly round the mouth of the vial, which we had inserted in it, and with a piece of waxed thread to make it fit better and more tightly, and then placed the vial on some hot coals in a brazier. The vapor or steam of the spirit, dilated and become aëriform by the heat, gradually swelled out the bladder, and stretched it in every direction like a sail. As soon as that was accomplished, we removed the vial from the fire and placed it on a carpet, that it might not be cracked by the cold; we also pricked the bladder immediately, that the steam might not return to a liquid state by the cessation of heat, and confound the proportions. We then removed the bladder, and again took the weight of the spirit which remained; and so calculated the quantity which had been converted into vapor, or an aëriform shape, and then examined how much space had been occupied by the body in its form of spirits of wine in the vial, and how much, on the other hand, had been occupied by it in its aëriform shape in the bladder, and subtracted the results; from which it was clear that the body, thus converted and changed, acquired an expansion of one hundred times beyond its former bulk.

Again, let the required nature be heat or cold, of such a degree as not to be sensible from its weakness. They are rendered sensible by the thermometer, as we described it above;139 for the cold and heat are not actually perceived by the touch, but heat expands and cold contracts the air. Nor, again, is that expansion or contraction of the air in itself visible, but the air when expanded depresses the water, and when contracted raises it, which is the first reduction to sight.

132Bacon plainly, from this passage, was inclined to believe that the moon, like the comets, was nothing more than illuminated vapor. The Newtonian law, however, has not only established its solidity, but its density and weight. A sufficient proof of the former is afforded by the attraction of the sea, and the moon’s motion round the earth. —Ed.
133Rather the refraction; the sky or air, however, reflects the blue rays of light.
134The polished surface of the glass causes the reflection in this case, and not the air; and a hat or other black surface put behind the window in the daytime will enable the glass to reflect distinctly for the same reason, namely, that the reflected rays are not mixed and confused with those transmitted from the other side of the window.
135These instances, which Bacon seems to consider as a great discovery, are nothing more than disjunctive propositions combined with dilemmas. In proposing to explain an effect, we commence with the enumeration of the different causes which seem connected with its production; then with the aid of one or more dilemmas, we eliminate each of the phenomena accidental to its composition, and conclude with attributing the effect to the residue. For instance, a certain phenomenon (a) is produced either by phenomenon (B) or phenomenon (C); but C cannot be the cause of a, for it is found in D, E, F, neither of which are connected with a. Then the true cause of phenomenon (a) must be phenomenon (B). This species of reasoning is liable to several paralogisms, against which Bacon has not guarded his readers, from the very fact that he stumbled into them unwittingly himself. The two principal ones are false exclusions and defective enumerations. Bacon, in his survey of the causes which are able to concur in producing the phenomena of the tides, takes no account of the periodic melting of the Polar ice, or the expansion of water by the solar heat; nor does he fare better in his exclusions. For the attraction of the planets and the progression and retrograde motion communicated by the earth’s diurnal revolution, can plainly affect the sea together, and have a simultaneous influence on its surface. Bacon is hardly just or consistent in his censure of Ramus; the end of whose dichotomy was only to render reasoning by dilemma, and crucial instances, more certain in their results, by reducing the divisions which composed their parts to two sets of contradictory propositions. The affirmative or negative of one would then necessarily have led to the acceptance or rejection of the other. —Ed.
136Père Shenier first pointed out the spots on the sun’s disk, and by the marks which they afforded him, computed its revolution to be performed in twenty-five days and some hours. —Ed.
137Rust is now well known to be a chemical combination of oxygen with the metal, and the metal when rusty acquires additional weight. His theory as to the generation of animals, is deduced from the erroneous notion of the possibility of spontaneous generation (as it was termed). See the next paragraph but one.
138“Limus ut hic durescit, et hæc ut cera liquescit Uno eodemque igni.” – Virg. Ecl. viii.
139See .