Read only on LitRes

The book cannot be downloaded as a file, but can be read in our app or online on the website.

Основной контент книги Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques. A Guide to Data Science for Fraud Detection
Text PDF

Volume 402 pages

0+

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques. A Guide to Data Science for Fraud Detection

authors
Bart Baesens,
wouter verbeke
Read only on LitRes

The book cannot be downloaded as a file, but can be read in our app or online on the website.

$49.95

About the book

Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. Examine fraud patterns in historical data Utilize labeled, unlabeled, and networked data Detect fraud before the damage cascades Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.

Log in, to rate the book and leave a review
Book Bart Baesens, Wouter Verbeke «Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques. A Guide to Data Science for Fraud Detection» — read online on the website. Leave comments and reviews, vote for your favorites.
Age restriction:
0+
Release date on Litres:
10 January 2018
Volume:
402 p.
ISBN:
9781119146827
Total size:
19 МБ
Total number of pages:
402
Copyright holder:
John Wiley & Sons Limited
Audio
Average rating 0 based on 0 ratings
Text, audio format available
Average rating 5 based on 1 ratings
Традиции & Авангард. №1 (8) 2021
Литературно-художественный журнал
Text
Average rating 0 based on 0 ratings