Learning with Support Vector MachinesPDF

Mark as finished
How to read the book after purchase
  • Read only on LitRes Read
Book description

Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data.

Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels

Detailed info
  • Age restriction: 0+
  • Size: 97 pp.
  • ISBN: 9781608456178
  • Total size: 0 MB
  • Total number of pages: 97
  • Page size: x мм
  • Publisher: Morgan & Claypool Publishers
  • Copyright: Ingram
Learning with Support Vector Machines — read a free preview online. Leave comments and reviews, vote for your favorite.
Book is part of series
«Synthesis Lectures on Artificial Intelligence and Machine Learning»
Introduction to Graph Neural Networks
Graph Representation Learning
Fluid Mechanics Experiments

Post a review

What do you think about the book?
Rate the book