Гимнастика. Секреты эффективного движения. Биомеханика. Структура. Техника

Text
Read preview
Mark as finished
How to read the book after purchase
Font:Smaller АаLarger Aa

3.4. ДВИГАТЕЛЬНАЯ ОШИБКА

3.4.1. Понятие «двигательной ошибки»

Обучение гимнастическому упражнению – конструктивный процесс, всегда связанный с поиском наилучшего решения двигательных задач, последовательно возникающих перед исполнителем в виде установки на все более высокий уровень исполнения движения. Практически неизбежный атрибут такой работы – преодоление затруднений, проблемных ситуаций и, как следствие, ошибок исполнения.

Поскольку гимнастические движения носят программный характер, успешность их выполнения может быть оценена только путем сопоставления реального движения с программой. Вместе с тем далеко не всякое расхождение между программой и выполненным движением может быть квалифицировано как ошибка, так как реальное исполнение упражнения, даже в целом успешное, редко достигает идеала. Таким образом, двигательная ошибка (далее – ДО) – это отклонение движения от заданной программы, влияющее на его спортивную оценку и требующее, в связи с этим коррекции в процессе обучения.

3.4.2. Значимость двигательной ошибки

Не всякое отклонение от нормы может расцениваться как ошибка. Следует различать разные степени и формы несоответствия между «идеальным» программным движением и реальным исполнением. Выделяются несколько видов таких отклонений, различные по значимости и свойствам. На рис. 3.18 они показаны в виде символических траекторий, в той или иной форме и степени, отклоняющихся от идеала.

Рис. 3.18. Значимость ошибки.


Флуктуации (а) – непроизвольные, случайные колебания параметров движения в непосредственной близости от нормы. Флуктуации неизбежно имеют место даже при «идеально» стабилизированном навыке и неуправляемы как естественное рассеяние при стрельбе. Они всегда пренебрежимо малы по величине, не дают повода для коррекционной работы в обучении и не рассматриваются как ошибка.


Вариации (б, в) – несущественные отклонения движения от идеальной программы, практически не влияющие на оценку качества исполнения упражнения. Однако наиболее заметные структурные вариации («протоошибки») могут давать повод для дополнительной работы, направленной на повышение стабильности навыка или его коррекцию.


Нарушения (г, д) – существенные отклонения от программного движения, при которых номинал упражнения сохраняется, но ошибки исполнения караются судейством.


Срывы (е, ж) – наиболее грубая форма несоответствия реального и программного движения, при котором исполнение упражнения не может быть засчитано.

В зависимости от степени сформированности, автоматизированности двигательных действий, все формы изменения движения (не считая флуктуаций) могут носить как изменчивый, так и фиксированный характер. Ошибки, не зафиксированные в форме навыка, являются нормальным предметом работы, тогда как «заученные» ошибки, автоматизировано повторяющиеся в составе навыка, представляют собой проблему, наиболее трудную для разрешения в обучении.


3.4.3. Причинно-следственные связи в структуре двигательной ошибки

Двигательная ошибка всегда порождается некоторым первичными факторами, порождающими, в свою очередь, целый ряд сдвигов, производных от первичного нарушения. Ошибочное движение, доступное для наблюдателя, представляет собой лишь окончание целого каскада причинно-следственных изменений, завершающихся отклонением от нормы, которые караются при судействе.


Рис. 3.19. Причинно-следственная структура двигательной ошибки.


Но это – формальная ошибка, попытки прямой коррекции которой, лишены смысла, так как истинная причина нарушения всегда восходит к самому началу причинно-следственной цепочки двигательных действий и носит психологический, ментальный характер, оставаясь скрытой для наблюдения и анализа. По этой причине, с практической точки зрения, наиболее важны срединные ступени причинно-следственного каскада нарушений, которые уже стали явными и еще восприимчивы для коррекции («сенситивные ошибки»). Иначе говоря, тренер и гимнаст имеют возможность корректировать ошибку не раньше, чем она станет доступной для наблюдения и анализа, но не позднее т.н. «основной стадии действий», от которой зависит возможность исполнения программы движения. Наиболее показательны в этом отношении упражнения типа прыжков, перелетов, соскоков: коррекция ошибочного движения в них возможна лишь в опорных стадиях движения, предшествующих полетной, результирующей части упражнения.

Часть третья
ДВИГАТЕЛЬНЫЕ ДЕЙСТВИЯ ГИМНАСТА

Глава 4. ОТТАЛКИВАНИЕ И ПРИЗЕМЛЕНИЕ

4.1. ОТТАЛКИВАНИЕ

С энергетической точки зрения гимнастические движения очень разнообразны. Так, безопорные перемещения и вращения представляют собой инерционные движения, предполагающие использование почти исключительно ранее полученной энергии. В движениях типа махов, оборотов, кругов, связок прыжков и просто при беге спортсмен также пользуется инерционным движением, но при этом осуществляет и дополнительную энергподпитку для восполнения диссипативных энергопотерь в системе.

Но наиболее радикальными в энергетическом смысле являются движения, выполняемые благодаря собственным действиям спортсмена. Таковы, прежде всего, упражнения, основанные на действиях типа отталкивания.


4.1.1. Принципиальный механизм отталкивания

Отталкивание, выполняемое в системе «тело спортсмена – опора», представляет собой биомеханически весьма сложное двигательное действие, технические детали которого могут быть чрезвычайно сложными и разнообразными. Однако в центре любого отталкивания имеется динамическое ядро-инвариант, совершенно одинаковое по смыслу и структуре независимо от сложности и техники движения в целом.


Двухфазная модель отталкивания. Динамическое ядро, то есть принципиальный механизм отталкивания, взятый, например, в простейшей форме типа прыжка вверх «с места», можно рассмотреть на модели, представляющей отталкивание как взаимодействие между опорой и системой, состоящей из двух полумасс, соединенных силовым элементом, «пружиной» (рис. 4.1).


Рис. 4.1. Принципиальная модель отталкивания.


Взаимодействие происходит при участии трех решающих сил: силы тяжести Р (приложенной как к полумассам, так и к ОЦМ системы, а через нее – к опоре), активной силы F, возникающей при изменениях взаимного положения звеньев и, соответственно, масс системы (т.е. при силовом изменении позы тела спортсмена), и силы опорной реакции N, возникающей при активном контакте с опорой.

Данная модель примитивна, но позволяет, тем не менее, проследить принципиальную структуру, на которой базируется любое отталкивание, что чрезвычайно важно для обучения. Если не иметь в виду различные действия, которые в реальном движении предшествуют собственно отталкиванию или следуют непосредственно за ним, то всякое отталкивание, взятое в виде его динамического ядра, можно представить, как характерную двухфазную структуру.

Первая фаза, в энергетическом смысле – решающая: включая в активную, форсированную работу мышечный аппарат, спортсмен расталкивает массы тела в противоположные стороны. При этом сила F, действующая на звенья, прилежащие к опоре, уравновешивается опорной реакцией N, а периферические звенья получают движение в сторону от опоры. По ходу фазы – соответственно мощности движения – нарастает давление на опору, добавляющееся к весу тела спортсмена16. Возникающая при этом деформация опоры, в том числе упругая (см. ниже), порождает соответствующую опорную реакцию, играющую кардинальную роль силы, без которой принципиально невозможно активное изменение физического состояния тела в целом.

Вторая фаза отталкивания – результирующая. Меняя направленность усилий на противоположную, т.е., стремясь сблизить «маховые» и «опорные» звенья-массы, спортсмен перераспределяет в системе ранее полученные импульсы. Технически эти действия выглядят как достаточно акцентированное «торможение» свободных, наиболее быстро двигавшихся звеньев, в результате чего потерянная ими энергия, в силу реактивного взаимодействия, передается смежным, в том числе приопорным, звеньям. Следствием этого является падение давления на опору вплоть до полной потери контакта с нею, если все действия были достаточно активными.

Реальная структура и соответствующая ей техника отталкиваний в целом и в деталях гораздо сложнее описанной схемы. Однако, ее осмысление в процессе практической работы и умение выделять ее двухфазный инвариант в любом двигательном действии этого типа чрезвычайно важны для формирования правильных представлений спортсмена и выбора наиболее эффективных приемов работы над упражнением. В частности, важно уметь вычленять структурное «ядро» отталкивания в тех спортивных упражнениях, которые, на поверхностный взгляд, относятся к иным биомеханическим категориям движений. Например, так называемые «маховые» упражнения, в том числе, и в особенности – в гимнастике, очень часто включают в себя в качестве неотъемлемого структурного компонента все те же действия отталкивания.

 

На рис. 4.2 вновь показан т. н. подъем разгибом на брусьях (из упора на руках согнувшись), движение, которое традиционно относится к разряду «маховых» упражнений на том основании, что решающее действие, дающее возможность гимнасту поднять свое тело плечами вверх-вперед и выйти в упор, внешне представляет собой мах ногами в направлении предстоящего подъема.


Рис. 4.2. Подъем разгибом на брусьях как отталкивание.


Между тем, механизм этого движения представляет собой несомненное отталкивание, выполняемое плечами от жердей. После подготовительных действий в виде акцентированного сгибания в тазобедренных суставах (к.к. 1—2) гимнаст тут же разгибается, «бросая» ноги вперед-вверх. Это разгибание структурировано точно так же, как типовое отталкивание и строится по описанной выше двухфазной схеме. При этом в первой фазе разгибания (к.к. 2—3) гимнаст действует ускоренно, нажимая при этом сильнее обычного плечами на жерди, а во второй (к.к. 3—4) усилием на сгибание в тазобедренных суставах «притормаживает» ноги, передавая тем самым кинетическую энергию смежным звеньям – туловищу и рукам. В результате становится возможным подъем всем телом с его вращением вперед вокруг оси, проходящей через точки хвата за жерди (к.к. 3—5).

Такого рода отталкивания чрезвычайно важны для исполнения большой категории спортивных движений, в том числе, например, упражнений, в которых резко меняется направление переместительного или вращательного движения.


4.1.2. Техника отталкивания

Эффективность отталкивания зависит от целого ряда факторов. Можно обладать превосходными двигательными качествами, но не умея ими рационально распоряжаться, т.е., не владея техникой отталкивания, показывать посредственный результат в упражнениях, базирующихся на этом действии. Рассмотрим ряд наиболее важных факторов, определяющих эффективность отталкиваний в гимнастических упражнениях.


Тонус и предварительное натяжение мышц. Это одно из важнейших биомеханических условий эффективного выполнения любого отталкивания. Как было показано в главе 3, наивысшие силовые и скоростно-силовые показатели мышца обнаруживает только в том случае, когда она оптимально подготовлена к работе. Это означает выполнение двух кардинальных требований: прежде чем мышцы-синергисты, занятые в данном случае, должны будут выполнять свое основное действие – выталкивание тела спортсмена от опоры, они должны быть оптимально напряжены и наилучшим образом (по скорости и амплитуде) натянуты.

При отталкиваниях ногами эти требования обычно выполняются благодаря подготовительным действиям типа быстрого, неглубокого «темпового» подседания, если прыжок выполняется из статического положения, или посредством наскока также с ограниченным по амплитуде подседанием в фазе амортизации, если это прыжок в движении. При отталкиваниях руками решающую роль играют силовые и «рессорные» свойства мышечно-связочного аппарата не столько рук, сколько пояса верхних конечностей (движения лопатки вверх-вниз, ее отведение-приведение к позвоночнику) и туловища (его сгибание-разгибание). Во всех случаях действия в фазе амортизации носят жестко-упругий характер, предполагающий рекуперацию энергии с ее возвратом виде отскока с ускорением масс тела спортсмена. При этом требование предварительного натяжения мышц относится не только к опорным звеньям тела, но и ко всему двигательному аппарату. Это означает, в частности, что переход в исходное положение для исполнения собственно отталкивания (с «замахом» свободными звеньями, соответствующим изменением позы и т.д.) также должен соответствовать требованиям оптимального предварительного напряжения и натяжения мышц.

Все сказанное определяет важнейшие требования к технике подготовительных действий к отталкиваниям с предварительным натяжением мышц в фазе амортизации. Главные из них:

– активная осанка с предельно возможным вытяжением тела (выпрямленное, оттянутое тело, постановка ног «с носка», удержание рук в приподнятом положении, прежде чем они будут переводиться в положение «замаха» и т.п.);

– высокий тонус всего мышечного аппарата, особенно опорных звеньев, на которые при отталкивании падает наибольшая физическая нагрузка (упруго-жесткий контакт с опорой, увеличение напряжения мышц по мере вхождения в фазу амортизации и др.);

– ограничение амплитуды суставных движений при амортизации с сохранением оптимальных суставных углов, обеспечивающих максимально возможную силу выталкивания;

– мгновенный переход от подседания с натяжением мышц к решающей фазе отталкивания с их сокращением – во избежание потери эффекта рекуперации.


Взаимодействие с опорой. Трение. Действия типа отталкивания подразумевают полноценную связь с опорой и ее соответствующие механические свойства.


Рис. 4.3. Приопорные взаимодействия при отталкивании.


При наиболее простых выталкиваниях (рис. 4.3) опорная реакция N, вызванная активными действиями спортсмена F, направлена перпендикулярно к опоре, и прыгун получает необходимую связь с нею, как бы испытывая опору на прочность (ср. с поведением опоры при упругом отталкивании). При отталкивании под углом к поверхности опоры и активная сила F, и «отвечающая» ей реакция N имеют вертикальную и горизонтальную составляющие, последняя из которых в обычном случае есть не что иное как сила поверхностного сцепления с опорой – сила трения.


Взаимодействие приопорных и периферических звеньев. В спортивном обиходе технические представления об отталкивании нередко сводятся к сопоставлению работы непосредственно опорных звеньев и т.н. «маховых», наиболее свободных звеньев отрытой биокинематической цепи (рук при отталкивании ногами, голени/стопы при отталкивании из виса и т.п.), которой в данном случае является тело гимнаста.

Между тем, надо понимать, что с биомеханической точки зрения, «маховая работа» при отталкиваниях включает в себя не только движение легкими периферическими звеньями, но и вообще представляет собой генерализованное движение всех масс тела, располагающихся дистально, в более подвижной части тела, отделенной его ОЦТ.

На рис. 4.1 этой «маховой» половиной тела является верхняя его полумасса, включающая в себя (при отталкивании ногами) всю верхнюю часть туловища с головой и руки.


Эффективность маховых действий при отталкивании обусловливается рядом факторов.

Первый из них – ускорение свободных звеньев при их маховом движении. Чем большее ускорение приобретают в 1-й фазе отталкивания свободные звенья тела спортсмена, тем больше, в силу реактивного взаимодействия в кинематической цепи, давление на опору, и тем эффективнее, при прочих равных условиях, физически мощнее все отталкивание. При этом эффективность махового движения зависит не только от физических возможностей исполнителя, но и от техники движения.

Так, иногда выгоднее выполнять мах не прямыми руками или ногой (что может быть непосильно, хотя, в принципе, желательно), а с их взвешенным сгибанием, так как в этом случае, действуя на уровне реальных физических возможностей исполнителя, можно достичь большего ускорения движущихся масс тела и, следовательно, более высокой их энергетики.

Второй фактор, связанный с первым – оптимальная амплитуда махового движения. При прочих равных условиях, наибольший энергетический эффект даст маховое движение свободными звеньями, выполняемое лишь до того момента, пока звено продолжает наращивать скорость и, соответственно, кинетическую энергию. Например, высокий, но замедленный взмах руками при акробатическом сальто сопровождается потерей мощности (конкретно – высоты вылета и скорости «крутки»).

Третий фактор, также связанный с предыдущими – масса звеньев, вовлекаемая в маховое движение. Очевидно, что чем бóльшие массы тела участвуют в ускоренном движении, тем, при прочих равных условиях, мощнее отталкивание.

Так, при отходе на акробатическое сальто быстрый мах вверх-назад совершают не только руки прыгуна, но и массивные верхние отделы туловища вместе с головой17. При этом движение еще активнее, если действия в тазобедренных суставах выполняются синхронно с однонаправленными действиями в суставах позвоночника (см. ниже). При т. н. «бросковых» движениях в гимнастике мах выполняется не только за счет действий в тазобедренных, но и плечевых суставах, благодаря чему в активное маховое движение сразу вовлекаются не только ноги, но и туловище.

Четвертый фактор – интенсивность, «резкость» торможения маховых звеньев, т. е., мощность действий второй фазы отталкивания. Даже при самом активном начале отталкивания последующие вялые действия не дают должного эффекта и приводят к бесполезному рассеянию ранее полученной кинетической энергии, переходящей в тепловую форму. Иными словами, мощность действий в обеих фазах отталкивания должна быть соразмерной, в противном случае механизм отталкивания «не срабатывает».

Пятый фактор – направление вращения маховых звеньев. Поскольку маховая работа периферическими звеньями, как и любое суставное движение, всегда носит вращательный характер, она не может не влиять на вращательные характеристики движения тела спортсмена в целом. Поэтому, в тех случаях, когда программа движения предполагает получение активного вращения всем телом, немаловажно как именно при отталкивании действуют маховые звенья спортсмена.

На рис. 4.4 даны в сравнении характерные случаи с различными сочетаниями направления вращения свободными звеньями и последующего движения всем телом при отталкивании.


Рис. 4.4. Направление вращения маховых звеньев при отталкивании


Уже первый случай «а» в этом смысле не так прост, как может показаться. Выполняя обычный, без вращения (для тела в целом) прыжок со взмахом рук вперед-вверх (то есть с их вращением назад), исполнитель вынужден едва заметным, как правило неосознаваемым, сгибанием тела («втягивая» грудь, отводя таз назад) компенсировать вызываемый таким махом рук «отвал» назад, с тем чтобы получить в итоге правильное поступательное движение вверх.

Второй случай «б» – акробатический переворот назад – предполагает вполне естественное и биомеханически рациональное сочетание одноименного вращения и перемещения всего тела. В этом случае маховая работа свободными звеньями содействует вращению всего тела акробата, причем в полном цикле переворота такое отталкивание выполняется дважды – вначале ногами (с махом руками) и затем руками (с маховой, «курбетной» работой ногами). Принципиально так же строятся и движения, в которых маховыми звеньями являются не только руки, но и свободная нога («маховые» акробатические сальто и т.п.).

Третий случай «в» также кажется вполне естественным по структуре маховых действий. Это, например, прыжок с мостика в опорных прыжках, когда тело в целом вращается вперед. Между тем вращение маховых звеньев и тела в целом в этом случае – разноименное, т.к. руки, двигаясь в сагиттальной плоскости и вращаясь в данном случае назад18, на этот раз не содействуют основному вращению тела вперед, а ограничивают его.

Для исполнения обычных прыжков эта деталь несущественна. Например, акробатическое сальто вперед можно делать, на выбор, по-разному, включая «задний темп» (рис. 4.5). Но если бы возникла задача освоить сальто вперед в первой полетой фазе опорного прыжка, то такая техника маха руками была бы единственно приемлемой.


Рис. 4.5. Сальто вперед махом рук назад.

 

Описанные случаи построения маховой работы свободными звеньями при отталкивании носят как бы подстроечный характер, внося оттенки в технику движения, но не определяя его принципиальной программы. Однако существуют формы спортивных движений, в которых направление и мощность вращательного движения свободными звеньями дают более радикальный результат вплоть до принципиального формирования программы вращения.

На рис. 4.6 три сравнительные ситуации перехода в полет махом вперед из виса на продольной опоре. К моменту перехода в безопорное положение тело гимнаста имеет определенную скорость вращения назад и при пассивной работе (без изменения позы в момент ухода от снаряда, «а») может сохранить ее в неизменном виде в полете («смокрут»).


4.6. Движения маховыми звеньями как фактор программного движения.


Но результат движения может быть иным, если переход в полет на фоне ранее полученного движения будет сопровождаться еще и активным отталкиванием, а значит и маховой работой дистальных звеньев, роль которых в данном случае играют ноги гимнаста. Если они, опережая другие звенья, вращаются в исходном направлении («бросок» свободным звеном по ходу основного движения), то тело в целом получает дополнительный кинетический момент (б).

Возможна, однако, и обратная схема действий, при которой маховые звенья при переходе в полет совершают более или менее быстрое вращательное движение, направленное против начального вращения (в).

Результат такой работы будет, соответственно, совершенно иным: в зависимости от интенсивности и технической эффективности таких «контрдействий» они могут не только ослабить или полностью нейтрализовать начальное вращение, но даже изменить его на противоположное. Так делается во многих гимнастических упражнениях, образующих целый характерный класс движений, например, прыжки и соскоки «летом», соскоки и подъемы дугой, соскоки и подъемы махом вперед, «перелет Ткачева» и т. п. (см. 11.3.2).


Синхронизация действий. Одним из важных координационных аспектов техники отталкивания является согласованность действий в суставах. При установке на высокую мощность движения, чисто с физической точки зрения, выгодно (несмотря на некоторые биомеханические особенности работы двусуставных мышц нижних конечностей) стремиться к возможно более одновременному, в идеале – синхронному включению в работу всех мышечных групп, обслуживающих при отталкивании звенья биокинематической цепи. В этом случае все элементы масс тела немедленно вовлекаются в движение (тем более быстрое, чем дальше звено располагается от опоры), а ОЦМ получает в итоге наибольшее ускорение и, как следствие, скорость по итогам всего отталкивания (рис. 4.7, а).


Рис. 4.7. Синхронизация действий в суставах при отталкивании.


Вместе с тем, синхронная работа в суставах резко повышает нагрузки на мышечный аппарат исполнителя (особенно в приопорных звеньях) и, соответственно, требования к скоростно-силовой подготовке. Поэтому при совершенствовании прыжков (как и вообще отталкиваний, в том числе руками) требуется настойчивая работа как над скоростно-силовыми возможностями спортсмена (без чего невозможно справиться с повышенными нагрузками, падающими на двигательный аппарат), так и над самим навыком синхронного отталкивания, предъявляющим высокие требования к координации действий. Последнее объясняет, почему иногда спортсмены с превосходными скоростно-силовыми данными плохо прыгают, и наоборот – почему некоторым исполнителям с относительно скромными физическими показателями удаются отличные прыжки.

Антитезой синхронному отталкиванию являются действия с последовательным, волнообразным вовлечением цепи в работу, начинающимся с маховых звеньев («б»). Такое распределение действий во времени при прочих равных условиях всегда снижает мощность отталкивания, давая меньшие максимальные усилия на опоре и бóльшую длительность действия. Но при этом оно предъявляет соответственно меньшие требования к физической подготовке спортсмена и степени его мобилизации в процессе исполнения упражнения.

Однонаправленные синхронные действия в суставах – максимальная модель отталкивания, к которой следует стремиться, но которая не всегда доступна ввиду ее трудности. Простейшим бытовым примером этого может служить вставание со стула: больной, старый человек не в состоянии быстро встать и выпрямиться сразу во всех суставах, как это может сделать, например, солдат, «вскакивающий» при появлении командира (а). Пожилой человек будет действовать не только более медленно, но и последовательно (б), снижая тем самым мощность действия и делая его для себя более доступным (рис. 4.8).


Рис. 4.8. Изменение мощности и трудности действий при отталкивании.


В определенных ситуациях и спортсмен вынужден пользоваться техникой, дающей меньшую мощность движения, но открывающей, благодаря этому, возможность исполнения упражнения.

Так, гимнаст, выполняющий соскок сильным махом вперед на перекладине (рис. 4.8) должен в решающей фазе упражнения, перед переходом в полет, выполнить резкое прогибание тела с отталкиванием руками от опоры, позволяющим форсировано изменить направление вращательного движения всего тела. Чем мощнее эти действия, тем выше класс исполнения движения. Поэтому идеальной здесь была бы именно синхронная работа ногами, туловищем и руками (в). Однако, такая техническая схема создает наибольшие нагрузки на относительно слабые мышцы плечевого пояса, которые часто с такой работой не справляются.

В этом случае требованиям исполнения упражнения в большей степени отвечает «мягкий», рациональный технический вариант действий (г), при котором прогибание тела выполняется естественным, в данном случае, волнообразным движением от ног к рукам, завершающим действия отталкивания. В дальнейшем, в процессе совершенствования, спортсмен может постепенно «подтягивать» технику к более «жесткому», синхронному варианту исполнения.


Генерализация действий. Требование возможной синхронизации действий при отталкивании тесно связано с другой кардинальной технической особенностью действий этого типа – масштабом вовлечения в работу ОДА спортсмена.

Важно учитывать, что любое технически верно выстроенное отталкивание должно представлять собой действие, в исполнении которого принимает участие весь двигательный аппарат спортсмена. Глубоко ошибочно примитивно представление, будто «отталкивание» ногами или руками это действие только самими указанными конечностями тела.

При обучении и совершенствовании отталкиваний важно помнить, что решающий динамический фактор этого движения, в основном определяющий его успех, а именно – ударно нарастающее давление на опору – находится в прямой зависимости от работы всего двигательного аппарата спортсмена. При этом ускоренное маховое движение звеньев, удаленных от опоры, является вовсе не вспомогательным действием, якобы «просто повышающим» эффективность всего движения, а неотъемлемым техническим компонентом этого движения. Без указанного технического компонента в принципе нельзя развить усилие на опоре, так как махи в отталкиваниях – это вовсе не только быстрые движения легкими периферическими звеньями – руками и (или) свободной ногой при опоре ногами (ногой), но и ускоренное движение массивными звеньями в сторону от опоры, в первую очередь, верхним отделом туловища.


Завершенность выталкивания. Одно из важнейших технических требований к отталкиванию – его выполнение до полного выпрямления тела. К моменту перехода тела в безопорное положение тело спортсмена должно быть предельно растянуто в направлении выпрыгивания (рис. 4.9, а).


Рис. 4.9. Завершенность выталкивания.


Типичная грубая ошибка при этом, характерная для новичков, делающих, например, сальто – поспешное снятие ног с опоры («чтобы побыстрее сгруппироваться»). Это всегда приводит к резкому снижению всех параметров прыжка – и в высоте полета и во вращении (б).


Динамические фазы нормального отталкивания. Отталкивание от жесткой опоры скоротечно, его длительность 0,1—0,2 с. Вместе с тем, этот «миг» наполнен сложным динамическим содержанием, включающим в себя массу деталей, важных для понимания и самого процесса отталкивания и его техники19.

На рис. 4.10 три модельные динамограммы отталкивания, разные по качеству, но подчиняющиеся общим структурным закономерностям. Выделяются несколько характерных фаз этого действия.


4.10. Модельная динамограмма вертикальной составляющей отталкивания.


1—я фаза: резкое наращивание давления на опору при наскоке на нее. Это фаза амортизации, заканчивающаяся напряженным «подседом». Мышцы работают в останавливающем режиме. Как правило, именно в этой фазе фиксируются пиковые значения усилий, развиваемых на опоре, но следует знать, что они вовсе не являются главными рабочими усилиями, которые определяют эффективность толчка. Ударные значения усилий, достигающиеся в этой фазе, могут быть очень высокими при вполне посредственных итогах всего отталкивания (б).

2—я фаза связана с весьма специфической динамической подстройкой. Происходит продолжение подседания, но мышцы действуют в уступающем режиме с подрасслаблением. Это приводит к некоторому спаду давления на опору и частичному рассеиванию потенциальной энергии, накопленной в мышцах.

Как показывают многочисленные экспериментальные исследования, эта фаза практически неизбежна при мощных отталкиваниях, поскольку позволяет, как бы «сканируя» собственные усилия, выйти на тот уровень реального рабочего напряжения, при котором спортсмен способен справиться с перегрузками, падающими на опорный аппарат, и выполнить решающую часть отталкивания. Чем выше степень физической и технической подготовленности спортсмена, тем меньше эта фаза выражена, что сопровождается сближением пиков на динамограмме (см. варианты кривых на фиг. а). И, напротив, у слабых прыгунов эта фаза гипертрофирована (б).

3—я фаза – решающая. Это собственно выталкивание, которое и обеспечивает, в конечном итоге, ускорение, получаемое телом при движении от опоры, а, значит, и эффект всего отталкивания, отскока. Она характерна повторным наращиванием усилий на опоре. Достигнув в напряженном подседании оптимального для себя уровня мобилизации мышечного аппарата, спортсмен вновь активно действует на удаление масс тела от опоры, заставляя мышцы работать в преодолевающем режиме.

16При наиболее активных действиях на опоре (отталкивания ногами с разбега сила воздействия на опору может на порядок превосходить вес тела гимнаста.
17Одним из приемов обучения акробатическому сальто с места является его исполнение с легкими гантелями в руках. Это помогает спортсмену не только лучше понять важность махового движения руками, но и, как правило, заметно улучшает качество прыжка.
18Не следует путать вращение с перемещением.
19Для того, чтобы веко мигнуло, тоже нужно около одной десятой секунды.