Физическая и коллоидная химия. Основные термины и определения. Учебное пособие

Text
Read preview
Mark as finished
How to read the book after purchase
  • Read only on LitRes Read
Font:Smaller АаLarger Aa

Биотехния. Совокупность научных закономерностей и технологических приемов, направленная на увеличение количества полезных животных и улучшение их продуктивных свойств.

Биотехнология. Раздел технологии, использующий биологические системы, живые организмы или их производные с целью создания и модификации продуктов или процессов различного назначения на практике.

Биохимия (биологическая, или физиологическая химия). Наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности.

Биоциды. Вещества, уничтожающие живые организмы. Включают пестициды (бактерициды, фунгициды, инсектициды, гербициды, зооциды и др.), антисептические, дезинфекционные и консервирующие средства.

Биофильные химические элементы. В почвах – химические элементы, связанные с живым веществом почв. Представлены в основном кислородом, углеродом, водородом, кальцием, азотом, калием, кремнекислотой, магнием, фосфором, серой и в сумме составляют 99,98 % сырой массы живого вещества.

Биоэлектрохимический иммуноанализ. Анализ с использованием биоэлектрода на основе иммобилизованного фермента и измерением динамики электрохимической активности.

Благородные газы. Инертные газы, или редкие газы: химические элементы VIII группы периодической системы: гелий (Не), неон (Ne), аргон (Аr), криптон (Кr), ксенон (Хе), радон (Rn).

Благородные металлы. Драгоценные металлы: золото (Au), серебро (Ag), платина (Pt) и металлы платиновой группы: иридий (Ir), осмий (Os), палладий (Pd), родий (Rh), рутений (Ru).

Боденштейна метод стационарных концентраций. В открытых системах часто наблюдается стационарный режим, когда в ходе химической реакции концентрации всех промежуточных частиц постоянны и не изменяются во времени. В таком случае скорости образования и расхода всех промежуточных частиц одинаковы:

С учетом данного условия Боденштейн предложил метод расчета концентрации промежуточных частиц и скорости химической реакции через концентрации реагентов.

Броуновское движение. Хаотическое перемещение частиц дисперсной фазы под воздействием теплового движения молекул дисперсионной среды. Это происходит как вследствие неодинакового числа ударов с разных сторон частицы, так и вследствие различной энергии молекул, сталкивающихся с частицей. В результате в зависимости от размеров частица приобретает колебательное, вращательное или поступательное движение.

Бурые угли. Класс твердых горючих ископаемых гумусовой природы невысокой степени углефикации; переходная форма от торфа к каменным углям.

Буфер универсальный. Смесь нескольких буферов, которую можно использовать в широких пределах рН.

Буфер электродный. Жидкость для электрофоретических ячеек, ванн и т. п., в которую погружены электроды.

Буферный раствор. Смесь слабой кислоты и ее гидролитически щелочной соли или слабого основания и его гидролитически кислой соли. Величина рН данных растворов мало изменяется при добавлении небольших количеств сильной кислоты или основания, при разбавлении или концентрировании. Буферные растворы широко применяются в большинстве химических, генетических и цитогистологических методик, имеющих дело с жидкими реактивами. Примеры: Трис-Б., фосфатный буфер (рН = 6,8: 4,05 г КН2РО4 и 4,25 г Na2HPО4 на 1 л воды; варьированием концентраций этих двух солей рН может обеспечиваться в широких пределах), буфер Мак-Иллвейна (рН = 7,0: 0,63 г лимонной кислоты, 6,19 г Na2HPО4 на 0,5 л воды); буфер Соренсена (рН = 6,5: 5,6 г КН2РО4 и 2,64 г Na2HPО4 на 1 л воды; рН = 6,8: 6,74 КН2РО4 и 7,08 г Na2HPО4 на 1 л воды); буфер Эрле (рН = 8,5–9,0: 0,2 г СаС12, 0,4 г KCl, 0,2 г MgSО4 × 7Н2О, 6,8 г NaCl, 2,2 г NaHCO3, 0,14 г NaH2PO4 × Н2O на 1 л воды). Применяют в иммуноферментном анализе. Основные характеристики буферных растворов: ионная сила, рН, буферная емкость. При увеличении ионной силы буфера возрастает сила тока и количество выделяемого тепла. При использовании буферных систем с низкой ионной силой общая сила тока и выделение тепла уменьшается, но диффузия (размыв образца) возрастает. Поэтому используют промежуточные концентрации в пределах от 0,01 до 0,3 М. Важно учитывать рН буфера, так как в зависимости от его показателя изменяется величина и направление движения исследуемых соединений. Последний параметр, характеризующий буферные растворы, – это буферная емкость. Она определяется большей или меньшей способностью нейтрализовать продукты электролиза, образующиеся в процессе электрофореза. Буферные системы применяют в зависимости от изучаемых белковых маркеров и подбирают эмпирически. Для расчета рН буферных растворов используют уравнения:

pH = pKa + lg[соль] – lg[кислота]

или

рH = pKa + lg[основание] – lg[соль],

где Ка – константа кислоты или основания.

Буферная емкость. Это интервал, в котором проявляется буферное свойство раствора. Она определяется количеством сильной кислоты или основания (кмоль), которое необходимо добавить в 1 м3 буферного раствора, чтобы сместить рH на единицу. Буферную емкость (Б) рассчитывают по формуле:

где ∆рН – изменение рН при титровании буфера кислотой или щелочью, наиболее близкое к 1 (∆рН = рН1 – рН0).

Буферная емкость экосистемы. Способность экосистемы противостоять загрязнению; количество загрязнителя, которое экосистема может поглотить без заметных отрицательных последствий для себя. Это понятие иногда используют при оценке отдельных компонентов ландшафтов; в частности, буферность почвы – ее способность сохранять кислотную реакцию (рН), особенно в связи с кислотными дождями. Буферная емкость природных вод – способность воды к самоочищению от антропогенных загрязнителей и т. д.

Буферность. Устойчивость системы к изменениям, вызываемым внешними факторами.

Буферность почвы. Способность жидкой и твердой фаз почв противостоять изменению реакции среды (рН) при прибавлении сильной кислоты (кислотное плечо, кислый интервал буферности почвы) или щелочи (щелочное плечо, щелочный интервал буферности почвы). Выражается количеством кислоты или щелочи (в эквивалентах), смещающим рН на единицу, или отрезками площадей, ограниченных кривыми титрования без буферной системы (кварцевый песок) и почвы.

Валентность. Определяется числом химических связей, которыми данный атом соединен с другими атомами. Пример: в молекуле SO2 (O=S=O) валентность серы равна 4, валентность кислорода – 4. В молекуле метана СН4 углерод четырехвалентен, а водород одновалентен. Валентность может не совпадать по абсолютной величине со степенью окисления атома. Например, в молекуле HNO3 степень окисления атома азота равна +5, а валентность равна 4. В молекуле пероксида водорода степень окисления кислорода равна –1, а валентность – 2. Валентность определяют для химических соединений с ковалентными или донорно-акцепторными связями, а в соединениях с ионной связью рассматривают только степень окисления атомов, образующих молекулу.

Вариантность (число степеней свободы системы). Число интенсивных термодинамических параметров состояния, которые можно изменять независимо друг от друга, не изменяя природу и число фаз, находящихся в равновесии.

Вещества гумусовые. Сложный динамический комплекс органических соединений, образовавшихся при разложении и гумификации органических остатков в почве. Основная масса гумуса (85–90 %) представлена его специфической частью – собственно гумусовыми веществами. Они состоят из ряда высокомолекулярных азотсодержащих органических соединений циклического строения, имеющих кислотный характер. Большая их часть находится в различных формах связи с минеральной частью почв. Основными группами гумусовых веществ являются: 1) гуминовые кислоты; 2) фульвокислоты; 3) гумины. Гуминовые кислоты – сложные высокомолекулярные азотсодержащие органические кислоты. Они формируются в почвах в аэробных условиях при участии бактерий и травянистой растительности (например: в черноземах). Гуминовые кислоты характеризуются высоким содержанием углерода и кислорода, гетерогенны, полидисперсны, от коричневого до черного цвета, хорошо растворимы в щелочах, нерастворимы в воде и кислотах и обладают большой поглотительной способностью. Взаимодействуют с минеральной частью почв через ионы водорода и фенолгидроксильные группы, образуют органо-минеральные соединения – гуматы (см. Гуминовые кислоты и гуматы). Гуматы Na, К, NН4 хорошо растворимы в воде и легко вымываются из почв (солонцовые почвы); Са и Mg, R2O3, Al(OH)3, Fe (OH)3 – соединения, прочно удерживаемые в почве. Гуматы Са и Mg создают водопрочную структуру (черноземы, дерново-карбонатные, лугово-черноземные почвы). Как гуминовые кислоты, так и их органо-минеральные соединения богаты питательными элементами. Фульвокислоты – сложные высокомолекулярные азотсодержащие кислоты светло-желтого или оранжевого цвета, хорошо растворимые в воде, кислотах и щелочах. Соединяются с минеральной частью почв, образуют фульваты (крелаты), сильно разрушающие минеральную часть почв (подзолистый процесс) вследствие хорошей растворимости в воде практически при любой реакции среды (см. Фульвокислоты). Гумины – сложный комплекс, в состав которого входят гуминовые кислоты и фульвокислоты, находящиеся в прочной связи с минеральной частью почв или же между собой. При переходе от северных подзолистых почв к черноземам содержание гуминовых кислот нарастает, фульвокислот – падает, состав гуминовых кислот меняется в сторону увеличения в них С и N. Количественный и качественный состав гумусовых веществ зависит от поступающей биомассы, условий водно-воздушного и теплового режимов, состава и свойств почв. Соотношение кислот дает качественную характеристику почвам (типы гумусовых веществ), возможность судить об условиях гумификации и свойствах почв. Гумусовые кислоты в разных почвах различаются по свойствам: в подзолистых и красноземных почвах они светло-бурые и мало конденсированы; в черноземах – черные и сильно конденсированы. Гумусовые вещества, являясь наиболее ценной частью почв, имеют огромное значение для почвообразования, плодородия почв и питания растений. Гумусовые вещества участвуют в первом этапе почвообразования – биологическом выветривании, способствующим формированию почвенного профиля по зонам (зональные процессы почвообразования). Гумусовые вещества являются запасным фондом питательных веществ, так как содержат азот и зольные элементы (Са, К, S, Р и др.), освобождаемые при разложении гумуса. Гумусовые вещества, благодаря наличию функциональных групп, обладают большой поглотительной способностью по отношению ко всем катионам. Наряду с Са и Mg и R2O3 они образуют неподвижные, не вымываемые из почв устойчивые соединения. Гумусовые кислоты обладают клеящими свойствами, связывают частицы, образуя агрегаты, играют важную роль в создании почвенной структуры и связанных с ней физических, физико-механических и других свойств и режимов почв. Водорастворимые гумусовые вещества, поглощаясь растениями, активизируют окислительно-восстановительные процессы в почвах, стимулируют рост и развитие растений. Забота о сохранении гумуса в практике сельскохозяйственного производства – важная задача агронома. Основные мероприятия по регулированию количества и качества гумуса – систематическое внесение органических удобрений, применение зеленых удобрений, травосеяние (бобовые), известкование кислых и гипсование щелочных почв, осушение, орошение, рациональная обработка почв и система применения удобрений, получение высоких урожаев.

 

Вещества зольные (элементы зольные). Вещества, составляющие золу после сжигания растительных остатков. Содержание золы в древесных растениях и мхах (сфагновых) 1–2 %, листья и кора деревьев содержат 4–6 % золы, а травянистые растения – 10–12 % (до 15 %). Основную массу золы составляют Ca, Mg, K, Na, Si, P, S, Fe, Al, Mn, Cl. В малых количествах встречаются I, Zn, B, F и другие из группы микроэлементов. Зольные элементы входят в состав различных соединений. Так, K входит в состав протоплазмы, а частично, в виде солей различных органических кислот, в состав клеточного сока. Ca образует кристаллы щавелевокислой соли, входит в состав хлорофилла, фосфор и сера – в состав белков и т. д.

Вещество органическое. 1) Органическая часть почвы, представленная живыми организмами (биофаза), а также неразложившимися органическими остатками и гумусовыми веществами. Последние делятся на неспецифические и специфические гумусовые вещества. Биофаза, или живое вещество почв – совокупность живых организмов: высших и низших растений, животных и микроорганизмов. Органические остатки – органические вещества, ткани растений и животных, частично сохраняющие исходную форму и строение. Гумусовые вещества неспецифической (индивидуальной) природы представляют индивидуальные органические соединения и промежуточные продукты разложения органических остатков (белки, аминокислоты, углеводы, моно- и полисахара и др.; лигнин, липиды, смола, дубильные вещества, спирты и др.). Они составляют 10–15 % от общего содержания гумуса или перегноя. Скорость разложения и размеры накопления органических веществ зависят от состава исходных органических веществ, влажности, аэрации, температуры, состава материнских пород и характера почвообразовательного процесса. Запасы гумуса зависят от количества и качества растительности и влажности по зонам. 2) Вещество органического, преимущественно растительного происхождения, образующееся из естественной или антропогенной флоры и проникающее в поверхностные горизонты почвы. Источник гумуса. Выделяют следующие классы почвенного органического вещества (ОВ) (Dommergues et Mangenot):

– собственно свежее органическое вещество состоит из мертвых листьев, веток, пожнивных остатков, мертвых корней, мертвых микробных клеток, трупов животных;

– свободное, или негумифицированное органическое вещество – легкая фракция с повышенным отношением C: N, легко подвергающаяся биодеградации; может быть отделена от глины с помощью физических методов; в лесных почвах эта фракция практически идентична разлагающейся подстилке.

Но границы между различными классами неизбежно произвольны, поскольку существует множество переходных типов органического вещества.

Вещества простые. Простые вещества состоят из атомов одного химического элемента. Примеры: S – сера, Fe – железо, F2 – фтор, O2 – кислород, O3 – озон, Cl2 – хлор, Н2 – водород и др.

Вещества сложные. Сложные вещества состоят из атомов разных химических элементов: Н2О – вода, H2SO4 – серная кислота, СН4 – метан, CH3COOH – уксусная кислота, ZnCl2 – хлорид цинка.

Взаимодействие

– дипольное. Дипольное, или ориентационное взаимодействие вызвано ориентированием (притяжением плюса одной к минусу другой) молекул с дипольной структурой при их сближении;

– индукционное. Взаимодействие возникает, когда обладающая диполем молекула сближается с нейтральной молекулой, у которой имеются заряды, равномерно распределенные по молекуле. Под влиянием дипольной молекулы у нейтральной молекулы происходит перераспределение заряда и индуцируется дипольный момент;

– кислотно-основное. Образование донорно-акцепторной связи в результате взаимодействия кислоты (акцептора электронных пар) и основания (донора электронных пар);

– Ван-дер-Ваальсово (Ван-дер-Ваальсовы силы). Слабое, нековалентное межмолекулярное взаимодействие, возникающее за счет взаимодействия дипольных (мультипольных) моментов молекул и поляризации их электронных оболочек.

Вискеры. Нитевидные кристаллы диаметром от 1 до 10 мкм и отношением длины к диаметру больше 1000, являются одним из наиболее перспективных кристаллических материалов с уникальным комплексом физико-химических свойств.

Виcкозиметр. Прибор для определения вязкости жидкостей.

Вискозиметрия. Совокупность методов измерения вязкости жидкостей и газов. Вискозиметрия, используемая для определения значения вязкости, позволяет оценить такие важные параметры материалов в растворе или расплаве, как, например, степень диспергирования наполнителя, существование полимерных связующих между его частицами и т. д.

Влажность воздуха. Содержание водяного пара в воздухе, характеризуемое следующими параметрами: упругостью водяного пара, абсолютной влажностью, удельной влажностью, отношением смеси, относительной влажностью, дефицитом влажности, точкой росы.

Влажность почвы. Величина, характеризующая содержание в почве влаги, выражается в процентах от массы сухой почвы (весовая влажность почвы), в процентах от объема (объемная влажность почвы), в процентах от содержания влаги, соответствующей тому или иному виду влагоемкости, чаще полной или наименьшей (относительная влажность почвы). Основной показатель, используемый в определении различных категорий влаги, влагообеспеченности растений и других целей. Содержание воды в почве выражается часто в миллиметрах водяного столба, что удобно для сравнения содержания влаги в почве с количеством выпадающих осадков. От взаимоотношения влаги и воздуха в почве зависит в значительной степени рост и развитие растений.

Внешняя среда (окружающая среда). Силы и явления природы, ее вещество и пространство, растения и животные, любая деятельность человека вне рассматриваемого объекта или субъекта. Может непосредственно не контактировать с ним. Все условия живой и неживой природы, при которых существует организм и которые прямо или косвенно влияют на состояние, развитие и размножение как отдельных организмов, так и популяций. Биотические факторы – животный и растительный мир в той или иной местности. Абиотические факторы – неорганический мир (особенности рельефа, почвы и водной среды, условия освещения, влажность воздуха, температурный и кислородный режимы и т. д.).

Внутренняя энергия. Обозначается как E или U. Складывается из кинетической энергии хаотического движения молекул, потенциальной энергии взаимодействия между ними и внутримолекулярной энергии. Внутренняя энергия является функцией состояния системы, т. е., когда система оказывается в данном состоянии, то ее внутренняя энергия принимает присущее этому состоянию значение независимо от предыстории системы. Изменение внутренней энергии при переходе из одного состояния в другое равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход. Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

U = Q – A,

где Q – теплота (Дж), А – работа (Дж).

Вода. Химическое вещество состава Н2О. Самое распространенное химическое соединение на нашей планете, уникальный растворитель. Молекула воды имеет симметричную нелинейную структуру. Связь Н‒О ковалентная полярная, угол Н‒О‒Н равен 104,5°, между молекулами воды существует водородная связь. Вода обладает целым рядом аномальных физических свойств, что объясняется в первую очередь наличием водородных связей. Физические свойства: Ткип. = 100 °C, Тпл. = 0 °C при атмосферном давлении. При комнатной температуре вода – жидкость без вкуса, цвета и запаха, прозрачная, плотностью 1 г/см3. Чистая вода является слабым электролитом. Различают ионное произведение воды: произведение концентраций ионов водорода и гидроксила не только в воде, но и в любом водном растворе есть величина постоянная при постоянной температуре. Пример: при 22 °C концентрация ионов водорода в чистой воде равна концентрации гидроксил-ионов и равна соответственно 10–7 г-ион на литр. Следовательно, можно записать: СН × СОН = 10–7 × 10–7 = 10–14.

Водородная связь. Вторая, побочная валентность атома водорода, которая проявляется по отношению к сильно отрицательным атомам, если основной валентностью он связан с атомом, наиболее сильно отрицательным в данной молекуле.

Водородный показатель рН. Величина, характеризующая концентрацию (активность) ионов водорода в растворе, численно равна отрицательному десятичному логарифму концентрации (активности) ионов водорода, выраженной в моль на литр. В разбавленных водных растворах 0 ≤ рН ≤ 14. В кислых растворах 0 ≤ рН ≤ 7. В нейтральных растворах рН = 7. В щелочных растворах 7 ≤ рН ≤ 14.

Для расчета рН в разбавленных растворах различных классов соединений используют следующие уравнения:

Сильные кислоты: рН = – lgaH+.

Сильные основания: pH = 14 – pOH

Слабые кислоты: pH = ½(pKк – lgC)

Слабые основания: pH = 14 – ½pKо + ½lgC

Гидролитически кислые соли: pH = 7 – ½pKосн – ½lgC

Гидролитически щелочные соли: pH = 7 + ½pKкисл + ½lgC

Буферные растворы: pH = pKa + lg[соль] – lg[кислота]

рH = pKa + lg[основание] – lg[соль].

Возгонка (сублимация). Превращение твердого вещества в газообразное без процесса плавления – например, возгонка йода.

Воспроизводимость. Повторяемость результатов анализа одного и того же элемента (вещества), полученная по данным нескольких экспериментов. Воспроизводимость характеризует рассеяние единичных результатов относительно среднего, т. е. степень близости друг к другу результатов единичных определений. Под воспроизводимостью также понимают рассеяние результатов химического анализа, полученных в разных лабораториях, в разное время и т. д. Воспроизводимость зависит от подготовки пробы для анализа.

Восстановитель. Атом, молекула или ион, который отдает электроны в окислительно-восстановительных реакциях. Примеры: Zn – 2e = Zn2+, Zn – восстановитель; 2Сl – 2е = Сl2, Сl – восстановитель.

Восстановление. Процесс присоединения электронов атомом, молекулой или ионом. Наблюдается в окислительно-восстановительных реакциях. Примеры: S + 2e = S2– – восстановление серы до сульфида; MnO4 + 8H+ + 5e = Mn2+ + 4Н2О – восстановление марганца от степени окисления +7 до степени окисления +2.

 

Время релаксации ионной атмосферы. Время, за которое ионная атмосфера образуется на новом месте и исчезает на старом.

Второе начало термодинамики (второй закон термодинамики)

– формулировка Клаузиуса. Теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому.

– формулировка Кельвина и Планка. Невозможно построить периодически действующую машину, единственным результатом действия которой было бы совершение механической работы за счет охлаждения теплового резервуара.

Математическое выражение второго начала термодинамики:

где Qобр или Qнеобр – полное количество тепловой энергии, выделенной или поглощенной системой; S – энтропия.

Высаливание. Выпадение растворенного высокомолекулярного соединения в осадок при определенной концентрации добавляемого электролита.

Высокомолекулярные соединения (ВМС). Соединения органической природы, молекулярная масса которых от нескольких тысяч до нескольких миллионов. ВМС образуют при смешивании с растворителем молекулярные растворы, подобные обычным растворам низкомолекулярных веществ, но с очень длинными цепными молекулами. Такие растворы относятся к однофазным (гомогенным) системам. Как и растворы сахара или мочевины, они образуются самопроизвольно, потому что сам процесс растворения идет с уменьшением свободной энергии и не требует наличия стабилизатора. Растворы ВМС оказываются вполне устойчивыми, независимо от длительности существования. Они являются молекулярными термодинамически равновесными системами, и поэтому обратимы. Вследствие наличия длинных молекулярных цепей ВМС отличаются по ряду свойств от растворов низкомолекулярных веществ и проявляют свойства высокодисперсных гетерогенных систем. К ВМС относятся натуральный и искусственный шелк, шерсть, хлопок, лен, синтетические смолы, пластические массы, натуральный и синтетический каучуки, синтетические волокна – капрон, нитрон, лавсан и др., а также белковые вещества, крахмал, целлюлоза, ее производные и многие другие.

Высокопроводящие материалы. Наноматериалы, которые разрабатываются в настоящее время с использованием нанотехнологий. Например, электрические кабели, сделанные из нанотрубок, при комнатной температуре будут иметь электропроводность на два порядка выше, чем медные кабели.

Вязкость. Внутреннее трение жидкости, возникающее при истечении одного слоя относительно другого. Единицы вязкости: в системе СИ – паскаль × секунда (Па × с); в системе СГС— пуаз (П). 1 Па × с = 10 П.

Вязкость относительная – отношение вязкости раствора полимера ηр к вязкости растворителя η0:

Вязкость удельная отражает возрастание относительной вязкости по сравнению с единицей:

ηуд = ηотн – 1

Вязкость приведенная учитывает влияние концентрации раствора на вязкость, т. е. оценивает, насколько велика удельная вязкость, отнесенная к единице концентрации растворенного вещества:

Вязкость характеристическая, или предельное число вязкости – экстраполяция зависимости ηуд /с от концентрации раствора с:

Вязкость структурная (зависит от давления) является результатом образования в жидкости внутренней сетчатой структуры, способной связывать в ячейках сетки большое количество жидкости.

Газ идеальный. Предельное состояние реальных газов при бесконечно малом давлении.

Газ Кнудсена. Газ, для которого в процессе диффузионного переноса число межмолекулярных столкновений меньше, чем со стенками капилляра, при условии, что диаметр капилляра (d) существенно меньше длины свободного пробега (d << λ) молекул (λ).

Газовая хроматография. Хроматографический метод разделения соединений, при котором используется инертный газ.

Газовые электроды. Относятся к электродам 1-го рода. Состоят из металла, не участвующего в электродном процессе, но адсорбирующего газ. Участниками электродного процесса являются адсорбированный газ и соответствующие ионы раствора. Пример – водородный электрод, где платиновая пластина находится в растворе кислоты. Через кислоту пробулькивается газообразный водород, и электродная реакция имеет вид:

Н+ + е ↔1/2 Н2.

Газообмен. Совокупность процессов обмена газов (О2, СО2, пары Н2О и др.) между организмом и окружающей средой; состоит в потреблении организмом кислорода, выделении углекислого и других газов, паров воды. У растений осуществляется через специальные органы – устьица, у простейших – через всю поверхность тела, у животных – через органы дыхания. Газообмен является первым этапом дыхания.

Гальванический элемент (цепь). Устройство, в котором энергия химических реакций, протекающих на электродах, преобразуется в электрический ток. Различают следующие цепи:

– концентрационная. Электрическая энергия возникает за счет разницы концентраций растворов, в которые опущен один и тот же металл. Пример:

Сu | Cu2+ (c1) | KCl | Cu2+ (c2)|Cu

– окислительно-восстановительная. Электрическая энергия возникает за счет реакций окисления – восстановления, которые могут протекать в электродном растворе. Пример:

Pt |Fe3+,Fe2+| 2H+ |H2,

где реакция окисления – восстановления имеет вид:

Fe2+ – e = Fe3+

– химическая. Электрическая энергия возникает за счет химического окислительно-восстановительного процесса, протекающего на электродах. Пример:

Cu | Cu2+ (c1) | KCl | Zn2+ (c2) |Zn.

Гальванопластика. Метод основан на использовании электролиза растворов солей, при котором металл соли выделяется на катоде в виде слоя, имеющего кристаллическое строение. Сущность гальванопластики заключается в получении металлических копий с различных предметов. Изобрел гальванопластику Б. С. Якоби (1801–1874).

Гальваностегия. Метод заключается в осаждении при посредстве электричества одного металла на поверхность другого металла с целью защитить последний от коррозии или повысить твердость металлических изделий. Для защиты металлов от коррозии применяют никелирование, хромирование, кадмирование, серебрение и т. д. Изобрел гальваностегию Б. С. Якоби.

Гамма-лучи (гамма-излучение). Электромагнитное излучение ультракоротких волн, испускаемое претерпевающими радиоактивный распад атомными ядрами или имеющее место при аннигиляции. Гамма-лучи обладают мощным мутагенным и иным повреждающим действием (лучевая болезнь и т. п.).

Гели. Дисперсные системы, которые характеризуются структурой, придающей им механические свойства твердых тел. Образуются при коагуляции золей, при высушивании необратимо разрушаются.

Гель. 1) Осадок высокомолекулярного вещества, полученный из его коллоидного раствора (золя). В виде геля осаждаются белки в изоэлектрической точке или при добавлении к растворам белков водоотнимающих средств (спирт, нейтральные соли). Гель легко перевести в коллоидный раствор. 2) Полуплотная смесь, состоящая из полимерного компонента и жидкости, используемая для разделения макромолекул ДНК (агарозный гель), РНК (агарозный полиакриламидный гель) или белков (полиакриламидный, или крахмальный гель). 3) Студнеобразная система, обладающая плотностью и эластичностью. Образуется в результате разбухания в горячей воде мицелл вещества, например, агара, желатины, алюминия гидроксида и др. Используется в реакции преципитации, электрофорезе, иммуноэлектрофорезе, приготовлении плотных питательных сред.

Гель гидроксида алюминия. Используют как носитель в колоночной или тонкослойной распределительной хроматографии.

Гель денатурирующий. Гель, в котором нарушается нативная структура биополимеров.

Гель концентрирующий. Верхний слой двухслойного полиакриламидного геля, состав и структура которого позволяют сконцентрировать образцы для лучшего разделения их в слое разделяющего геля методом электрофореза.

Гель неденатурирующий. Гель, в котором сохраняется нативная структура биополимеров.

Гель прерывистый. Двухслойный гель, состоящий из концентрирующего и делящего слоев.

Гель-сканер. Прибор, предназначенный для индикации распределения биологических макромолекул в плоских ПААГ-пластинах, а также агарозных пластинах, при анализе сложных смесей методом электрофореза.

Гель-фильтрация. Разделение молекул по размерам в гелях с заданным диаметром пор. Метод очистки веществ путем фильтрации через колонки различной величины, наполненные адсорбентом, выполняющим функцию молекулярного сита. Используется при разделении различных классов антител, ферментов, белков, отличающихся по молекулярному весу. Гель-фильтрацию проводят через различные марки сефадексов и других полимерных соединений. Матрица представляет собой множество простых частиц, между которыми находится элюат. При нанесении исследуемого материала на верхнюю часть колонки мелкие частицы или молекулы задерживаются некоторое время в порах адсорбента и элюируются позднее. В первых порциях элюата обнаруживают молекулы, имеющие наибольший молекулярный вес и размеры. Таким образом, гель-фильтрация – это разделение смеси в порядке уменьшения молекулярного веса и размеров.

Гель-электрофорез в градиенте пульсирующего поля. Вариант метода электрофореза в агарозном геле. Характеризуется чередующимися электрическими импульсами полей, расположенных под тупым углом друг к другу. Продолжительность импульсов от 1 до 90 с. Метод используется для высокоразрешающего разделения макромолекул, в частности, фрагментов ДНК (или целых хромосом, например, дрожжей) размером от 100 до 2000 и более тысяч пар нуклеотидов. Метод предложен Д. Шварцем и Ч. Кантором (1984).

You have finished the free preview. Would you like to read more?