Руководство по спортивной медицине

Text
Author:
1
Reviews
Read preview
Mark as finished
How to read the book after purchase
Font:Smaller АаLarger Aa
1.2.6. Потребление кислорода при мышечной работе

При переходе от состояния покоя к интенсивной мышечной деятельности потребность в кислороде возрастает во много раз, однако сразу она не может быть удовлетворена. Необходимо, чтобы последовательно прошли все биоэнергетические реакции, прежде чем усилится деятельность систем дыхания и кровообращения, а кровь, обогащенная кислородом, дойдет до работающих мышц.

При равномерной работе и достижении определенной мощности рост потребления кислорода прекращается и оно стабилизируется на одном уровне. Такое состояние потребления кислорода работающими мышцами называют истинным устойчивым состоянием потребления кислорода: оно достигает определенного уровня и в каждый данный момент времени точно соответствует потребностям организма. Иными словами, сколько кислорода нужно организму для выполнения работы такой мощности, столько он его и получает.

Та зона физических нагрузок, которая располагается между порогом аэробного обмена и истинным устойчивым состоянием потребления кислорода, называется зоной аэробных физических нагрузок. Работа в этой зоне может продолжаться часами (триатлон, марафон, длительная ходьба, пилка дров и др.). Аэробные нагрузки тренируют сердце и общую выносливость и составляют методическую основу оздоровительной физкультуры.

При увеличении мощности работы происходят существенные изменения: в частности, требуется большее количество кислорода, в связи с чем истинное устойчивое состояние потребления кислорода нарушается и дальнейшее увеличение потребления кислорода переходит планку порога анаэробного обмена. Обычно такое состояние у молодых нетренированных людей наступает при достижении показателя МПК порядка 3,0 – 3,5 л/мин.

Подобное повышение поступления в организм кислорода может продолжаться вплоть до достижения МПК. При этом потребление кислорода также стабилизируется. Это состояние появляется при установлении частоты сердечных сокращений (ЧСС) порядка 170 – 180 уд/мин. Абсолютные показатели мощности нагрузки значения не имеют. Такая стабилизация потребления кислорода при мышечной работе получила название ложного устойчивого состояния потребления кислорода, так как в данном случае потребление кислорода не растет не потому, что больше не нужно, а потому, что механизмы транспорта кислорода к работающим мышцам, и прежде всего сердечно-сосудистая система (ССС), исчерпали свои функциональные возможности.

Максимальный уровень потребления кислорода не может поддерживаться долго. Тренированный спортсмен будет работать в этой зоне порядка 10 – 12 мин, нетренированный – около 5 мин. Поскольку поступающего в организм кислорода не хватает для выполнения работы заданной мощности, возникает кислородный дефицит, который восполняется за счет возврата на анаэробные механизмы энергообеспечения, прежде всего – на анаэробный гликолиз, что приводит к накоплению в организме продуктов анаэробного распада. Поэтому зона мощности работы, которая располагается между планками порога анаэробного обмена и МПК, получила название зоны аэробно-анаэробных нагрузок.Работа в этой зоне может быть отражена формулой: кислородный запрос работы больше кислородного прихода работы. Поскольку работа продолжается при недостатке кислорода, возникает так называемый кислородный долг.

Если в работе возможно установление истинного устойчивого состояния, то часть анаэробных метаболитов может быть окислена по ходу работы за счет усиления аэробных реакций, другая часть ликвидируется после окончания работы. Если истинное устойчивое состояние не устанавливается, то количество недоокисленных продуктов увеличивается по ходу работы, а устраняются они в восстановительный период.

Для устранения анаэробных метаболитов требуется дополнительное количество кислорода, поэтому некоторое время после окончания работы потребление его продолжает оставаться повышенным по сравнению с уровнем покоя. При достаточно высоких мощностях работы погашение кислородного долга требует десятков минут, а порою даже и часов.

Зона аэробно-анаэробных нагрузок в большей своей части является зоной профессиональной спортивной деятельности. В оздоровительной физкультуре подобные мощности нагрузок используются крайне ограниченно и лишь у хорошо подготовленных людей.

Зона мощностных характеристик работы, которая располагается выше планки МПК, получила название зоны анаэробных нагрузок. Работа в этой зоне протекает на максимуме функциональных возможностей при показателе ЧСС порядка 220 – 240 уд/мин.

Профессиональный спортсмен может работать в этой зоне порядка 4 – 5 мин, нетренированный – около минуты. Подобные физические нагрузки чисто профессионально-спортивные и в оздоровительной физкультуре не применяются.

1.3. Двигательный аппарат как биомеханическая система

Движение лежит в основе жизнедеятельности человека. Наиболее элементарной формой движения материи является механическое движение, т. е. перемещение тела в пространстве. Закономерности механического движения изучаются механикой.

Биомеханика – наука о законах механического движения в живых системах. Она изучает движения с точки зрения законов механики, свойственных всем без исключения механическим движениям материальных тел. Однако сложность движения и функций живого организма требует тщательного учета анатомо-физиологических особенностей. Нередко то, что выгодно с точки зрения законов механики, нецелесообразно, если учесть особенности строения и функции живого организма.

Движения частей тела человека представляют собой перемещения в пространстве и времени, которые выполняются во многих суставах одновременно и последовательно. Все движения закономерно объединены в целостные организованные действия, которыми человек управляет при помощи мышц. При биомеханическом исследовании невозможно учесть строение и функции тела во всех их особенностях. Для изучения движений строят модель тела человека, на которой можно изучать закономерности движений, — биомеханическую систему. Она обладает основными свойствами, существенными для выполнения двигательной функции, но не включает в себя частные детали.

Кинематические цепи. Множество частей тела, соединенных подвижно, образуют биокинематические или артикуляционные цепи. К ним приложены силы (нагрузки), которые вызывают деформации и изменение движений. Механические свойства (особенности строения и функции) этих цепей влияют на выполнение движений.

При изучении статики и динамики человеческого тела анатомические сведения о скелетно-мышечной системе можно выразить в терминах механики. Например, понятия «кость» и «мышца» заменимы понятиями «рычаг» и «сила».

Движения в суставах осуществляются путем сокращения мышц. Иными словами, суставы являются только шарнирами, приводимыми в движение мышцами. Независимо от природы мышцы и способа прикрепления ее сухожилий к костным элементам участок прикрепления одного ее конца остается неподвижным, тогда как противоположный участок прикрепления приходит в движение при изменении мышцей своей длины. В результате происходит перемещение участка скелета, который служит местом прикрепления подвижного конца мышцы. При всем разнообразии производимых таким образом перемещений все они укладываются в схему перемещений, осуществляемых рычагом, точка приложения действия которого образована суставом.

Принципы мышечно-суставной биодинамики рассмотрим на работе M. biceps (рис. 2).

Точкой прикрепления этой мышцы является передняя поверхность плечевой кости, ее сокращение вызывает или стремится вызвать вращение предплечья в локтевом суставе вокруг оси, направление которой приближается к поперечной плоскости этого сустава.

Сила или момент (М) вращения зависит от трех факторов:

– собственной силы мышцы (Fm);

– угла приложения мышечной силы, который образуют между собой предплечье и мышца (угол á);

– длины плеча костного рычага, идущего от оси вращения локтевого сустава к месту прикрепления сухожилия (l).

Рис. 2. Биодинамика М. biсерs (стрелкой указано направление сгибания)


Момент вращения на уровне оси локтевого сустава определяется по формуле:



Значение sin á для угла 90° составляет единицу, тогда сила вращения равняется произведению Fm · l, если направление мышечной силы перпендикулярно правлению предплечья. Чем меньше плечо тяги и чем больше угол, под которым действует сила тяжести, тем большее требуется напряжение мышц. Для локтевого сустава минимальная сила – при 10°, средняя – при 30°, максимальная – при 90° (sin 90° = 1).

При 90° рычаг формируется таким образом, что плечо тяги мышцы имеет длину порядка 3 см, т. е. бицепс прикрепляется к кости несколько ниже плечевого сустава. Плечо же груза, удерживаемого кистью, составляет около 30 см. Отношения плеч рычага составляют 1: 10. В итоге это приводит к тому, что происходит проигрыш в силе в 10 раз, т. е. чтобы удержать груз весом 10 кг при согнутой руке, мышца должна развить усилие в 100 кг. Аналогичные отношения имеются и в других суставах, например в голеностопном. Там проигрыш в силе составляет 6 раз. Поэтому при поднятии на носки человека весом 60 кг икроножная мышца должна развивать усилие в 420 кг. Не случайно ахиллово сухожилие является самым мощным – ему приходится выдерживать нагрузки до 500 кг. Проигрыш в силе в костно-мышечных рычагах не является ошибкой эволюции, ибо он сопровождается выигрышем в скорости движений. Таким образом, наши мышцы фактически развивают более интенсивные усилия, чем это проявляется в отношении внешних нагрузок и чем это представляется в обыденной жизни.

 

При изучении естественных движений невозможно рассматривать изолированные сегменты тела или отдельные мышцы. В этих случаях речь идет о сложной системе рычагов, приводимых в движение совместным действием мышечных групп. Любое движение является результатом совместной деятельности мышц трех функциональных категорий:

– мышц-агонистов, которые преодолевают сопротивление и обеспечивают начало движения;

– мышц-антагонистов, которые контрбалансируют и умеряют деятельность предыдущей группы;

– фиксирующих мышц, обеспечивающих стабилизацию элементов скелета.

Движения требуют для своего осуществления включения действий рычагов, в состав которых входит вся костная система человека. В таких случаях формируются сложные механические построения, содержащие несколько последовательных сочленений и сегментов тела, связывающих эти сочленения между собой, т. е. несколько звеньев. Такие построения имеют общее название – артикуляционные (кинематические) цепи. При биомеханическом исследовании артикуляционных цепей выделяют два вида: закрытые и открытые (рис. 3).


Рис. 3. Примеры открытой (а) и закрытой (б) артикуляционных цепей (стрелка указывает направление движения)


Если дистальный конец цепи не подвергается заметному действию внешнего сопротивления, которое ограничивает его движение, то такую цепь называют открытой. В результате свободы движений ей можно сообщить значительную скорость и ускорение (это движения для переноса предметов и манипуляции с ними).

Если дистальный конец встречает внешнее сопротивление, которое ограничивает свободу движений, такую цепь называют закрытой (это движения для поддержания рычагов управления, рукояток). Для преодоления этого сопротивления мышцы должны развивать более или менее значительную силу, что является характерной чертой закрытых цепей.

Сложность движений зависит от количества звеньев в кинематической цепи и мышечных групп, вовлеченных в движение. Различают 5 классов сложности движений:

1) только пальцев руки;

2) пальцев и кисти;

3) пальцев, кисти и предплечья;

4) пальцев, кисти, предплечья и плеча;

5) пальцев, кисти, предплечья, плеча и туловища.

При исследовании движения в суставах используют понятие о степенях свободы движений, которые характеризуют возможности перемещения различных тел в пространстве.

Степени свободы – это направления, в которых данное тело может совершать движения.

Шарнирный механизм может совершать вращение вокруг единственной оси и имеет одну степень свободы движений.

Абсолютно свободное тело имеет 6 степеней свободы движений: три степени взаимно перпендикулярных направления движения (вверх – вниз, вправо – влево, вперед – назад) и три взаимно перпендикулярных оси вращения в тех же направлениях.

Суставы с одной степенью свободы могут совершать движение только в одной плоскости (межфаланговые).

Суставы с двумя степенями свободы обеспечивают движение в двух взаимно перпендикулярных плоскостях (лучезапястный, коленный).

Суставы с тремя степенями свободы обеспечивают движение в трех взаимно перпендикулярных плоскостях (плечевой и тазобедренный).

Если в изолированном суставе с 2 – 3 степенями свободы заложены большие двигательные возможности, то в целостном организме эти возможности возрастают в огромной мере, потому что в организме мы имеем не изолированные пары костей, а ряд кинематических цепей с несколькими последовательными звеньями.

Свойства кинематической цепи подчиняются правилу: число степеней свободы периферического звена равно сумме степеней свободы предшествующих звеньев (например, кисть руки имеет 7 степеней свободы движений по отношению к туловищу – 3оси вращения у плечевого сустава и по 2 оси у локтевого и лучезапястных суставов, в результате имеется запас одной степени свободы). Поскольку уже 6 степеней свободы дают безграничные возможности перемещений, то в пределах длины руки кисть может двигаться так, как будто она вовсе не имеет связи с лопаткой.

При наличии такого большого числа степеней свободы выполнения движений верхней конечности приобретают определенность и целесообразность благодаря тому, что в каждое мгновение в каждом сочленении за счет сокращения мышц исключаются все возможные движения, все степени свободы, кроме одной, соответствующей выполняемому целесообразному движению. Поэтому простейшее движение – поднятие груза на вытянутых руках – происходит так, что вследствие одновременного напряжения мышц-антагонистов в локтевом и лучезапястном суставах вся рука фиксирована в виде жесткого рычага и все подвижности в этих суставах погашены. Также исключено напряжение мышц, осуществляющих приведение и отведение плеча. Оставшаяся возможность движения верхней конечности – сгибание и разгибание в плечевом суставе – используется для такого рабочего движения, как поднятие груза на вытянутых руках. Более сложное движение – свободное поднятие груза – выполняется при одновременном сгибании руки в плечевом и локтевом суставах. Движение поднятия груза с укладкой его на подставку выполняется так, что в начале движения происходит одновременное сгибание в плечевом и локтевом суставах, а затем, в середине траектории поднятия, сгибание в локтевом суставе прекращается и переходит в разгибание. В то же время в плечевом суставе продолжает происходить сгибание (вынос плеча вперед).

1.4. Статистическая и динамическая работа мышц. Сила и выносливость мышц

В мышечной работе различают два компонента: статическую и динамическую работу.

Динамическая работа. Это работа, связанная с перемещением тела или его отдельных частей в пространстве. При динамической работе происходит изменение длины мышечных волокон, но напряжение волокон остается постоянным. Для динамической работы характерна более или менее регулярная смена процессов сокращения и расслабления мышцы. Мышечная сила при динамической работе может быть больше или меньше величины внешнего противодействия. При динамической работе сопротивления, т. е. когда мышечная сила меньше величины внешнего противодействия, происходит удлинение мышечных волокон (опускание груза, спуск по лестнице). Особенностью динамической работы является то, что при ней наблюдается чередование противоположных движений за счет работы мышц-антагонистов. Такое чередование создает благоприятные условия для работы мышц. Во-первых, их работа чередуется с периодами отдыха. Во-вторых, в такие периоды отдыхают и руководящие мышцами нервные центры, что создает благоприятные условия для функционирования нервной системы в целом.

Статическая работа. Это работа мышц при неподвижном удержании груза. При статической работе длина мышечных волокон не меняется, а изменяется степень напряжения. В повседневной жизни статическая работа проявляется в двух формах: поддержании позы и удержании какого-либо груза. Сила сокращения при поддержании позы сравнительно невелика. Непрерывное мышечное сокращение при этом становится необязательным, оно производится только в определенные моменты с целью исправления легких нарушений равновесия позы. Однако некоторые специальные позы, такие как удержание верхних конечностей в горизонтальном положении, требуют значительных статических усилий. В большинстве случаев при удержании груза или сохранении позы противодействующей силой является сила тяжести. В некоторых случаях статическое сокращение может быть направлено на преодоление другой внешней силы. Особенностью статической работы является то, что при ней функционируют одни и те же мышечные группы. Это ведет к чрезвычайно быстрому утомлению их, в основном из-за ухудшения питания. Поэтому необходимо стремиться в любой работе свести статический компонент к минимуму.

Большинство действий человек выполняет за счет динамической работы, но в любой работе в большей или меньшей мере присутствует статический компонент. В основном от него и зависит утомительность. Во многих случаях статическая нагрузка возникает и при выполнении умственной работы за счет поддержания определенной позы. Таким образом, статическая нагрузка свойственна большинству работ, хотя она обычно выступает не в чистом виде, а в качестве одного из второстепенных элементов.

Работа мышц может протекать по-разному:

– как работа положительно динамическая, во время которой мышцы, сокращаясь, выполняют механическую работу благодаря превращению части выработанной энергии в механическую;

– как работа отрицательно динамическая, во время которой мышцы играют роль тормоза по отношению к действию внешнего усилия (в этих условиях вся выделившаяся энергия превращается в тепловую);

– как статическая работа, физиологическую основу которой составляет повышенное напряжение мышц. Длина мышечных волокон при этом не изменяется, мышца не выполняет никакой внешней работы, но в ее тканях происходят изменения, приводящие к преобразованию химической энергии в тепловую.

Принципы экономии движений. Конечной целью всех исследований в области движений является улучшение условий работы – разработка принципов экономии движений. Выделяют следующие принципы экономии движений:

1. Одновременность и симметричность движений. Рекомендуются следующие правила:

– обе руки должны начинать и заканчивать движения одновременно;

– движения рук могут иметь противоположные направления при условии, что эти движения симметричны;

– обе руки могут бездействовать только в период отдыха.

2. Экономичность движений, т. е. наибольшая простота. Физиологи установили, что утомление при работе зависит от количества мышц, принимающих участие в работе. Из этого следует, что наиболее простые движения вызывают наименьшее утомление.

3. Непрерывность и плавность движений. Такие движения более экономичны, чем прямолинейные движения с резкими изменениями направления.

4. Ритм движений. Ритмичностью называется повторяемость действий за одинаковые промежутки времени. Она обеспечивает меньшее расходование энергии мышцами, уменьшение усталости, позволяет достигать автоматизации рабочих движений.

5. Контроль движений. Контролируемые движения выполняются несколькими группами мышц: одна группа действует в одном направлении, а другая тормозит ее и обеспечивает нужную координацию. Примеры контролируемых движений: черчение, измерение, монтаж и т. д.

Основные факторы мышечных усилий.

1. Степень растяжения мышцы. Чем больше растянута мышца в исходном состоянии, тем выше степень развиваемого ею напряжения.

2. Обусловленность углом тяги. Мышечное усилие наиболее эффективно, если направление тяги составляет угол 90° с продольной осью соответствующей кости. Чем острее угол между направлением тяги и осью звена, тем меньше полезная отдача мышечного усилия.

Эти моменты часто антагонистичны. При сгибании в локтевом суставе наибольшее растяжение бицепса будет при разогнутой руке. Однако угол в этом случае будет близок к нулю градусов. В данном случае оптимальным будет угол около 90° (здесь фактор, обусловленный углом тяги, имеет большее значение, чем степень растяжения мышцы).

3. Положение центра тяжести звена. Величина выполняемой работы пропорциональна моменту силы тяжести звена, т. е. произведению его веса на плечо соответствующего рычага от точки вращения в суставе до центра тяжести звена (например, перейти из положения лежа на спине в положение сидя намного труднее, когда руки находятся за головой).

4. Сила мышцы. Под ней обычно понимают максимальную силу, т. е. величину груза, который в состоянии поднять данная мышца. Величину максимальной мышечной силы следует отличать от абсолютной силы мышцы. Абсолютная сила мышцы – это сила, приходящаяся на 1 см2 физиологического поперечного сечения (сечения, проведенного перпендикулярно мышечным волокнам). Мышечная сила зависит от ряда причин, среди которых выделяют биологические и профессиональные.

Биологические:

– телосложение;

– пол (у женщин сила мышцы на 30 % меньше, чем у мужчин);

– возраст (максимальная сила в 20 – 30 лет, к 60 годам она снижается до 90 %).

С биологическими тесно связаны профессиональные факторы.

Их было выделено три:

– зависимость от угла сгибания сегментов конечности (например, нижняя конечность может развивать усилие от 90 до 200 кг, в зависимости от угла сгибания в коленном суставе и положения туловища);

– природа усилия (при толчке усилие максимально, при вращении – минимально);

– стабильность (фиксация) рабочей позы.

Понятие мышечной силы не следует смешивать с выносливостью. Выносливость, или емкость работы, – это способность длительного выполнения работы на заданном уровне без развития утомления. Выносливость может быть измерена тем предельным временем, в течение которого возможно поддержание мышечной деятельности на заданном уровне. Основным фактором, ограничивающим продолжительность работы, является утомление. Путь к развитию выносливости лежит именно через утомление. Исследования в физиологии спорта показали, что работа, совершаемая до утомления, – обязательное условие совершенствования выносливости. В физиологии спорта оценку силы и выносливости обычно проводят с помощью кистевых динамометров.

 
You have finished the free preview. Would you like to read more?