Free

Правила счета элементов бесконечного множества

Text
Mark as finished
Font:Smaller АаLarger Aa

и для второго примера:



Для сравнения приведем и третий пример:



Как видим, оба метода – умножение и перетасовка цифр – дают числа одного и того же порядка с разрядностью площади квадрата (миллион). При этом можно догадаться, что количество разных произведений координат ровно в два раза меньше, чем количество пар сомножителей, поскольку они могут меняться местами. Действительно, пар сомножителей ровно миллион, следовательно, и произведений тоже ровно миллион. Поскольку существуют симметричные пары сомножителей, то их произведения равны. Следовательно, число уникальных произведений равно полумиллиону. Мы полагаем, что произведение разных чисел дают разные результаты.

При перетасовках цифр смешиваемых пар также ровно миллион, следовательно, и результирующих чисел с перетасованными цифрами также будет миллион. Но в этом случае, что довольно странно, среди них не будет одинаковых. Иначе говоря, при умножении пар какие-то значения в ряду из миллиона чисел будут отсутствовать. Это легко обнаружить: при перетасовке пар может быть получено число 999 999, но при умножении пар такое число получено быть не может – максимальное значение произведения равно 998 001. И таких "отсутствующих" произведений пар – ровно полмиллиона.

Несомненная выгода метода Кантора в том, что каждая точка получит свой индивидуальный, уникальный индекс. Однако остаётся проблема: таких индексов заведомо больше, чем элементов в строке, следовательно, и в отождествляемой линии. Искусственно введенная запятая сжимает эти числа до интервала отрезка [0, 999], но множество из них сразу же становятся дробными, то есть, объективно также не могут этому отрезку принадлежать. Увеличение до бесконечности дискретности квадрата и линии сохранит эту тенденцию без отождествления точек квадрата и линии.

А что же с исходным методом Кантора для единичного отрезка? Там, как видим, произведена точно такая же замена умножения двух чисел на перетасовку их цифр, позволившая получить нужное количество индексов. Порядок чисел при умножении и перетасовке по-прежнему один и тот же. Однако индексы или произведения координат имеют больший порядок дискретности, чем каждая из координат, в том числе, и точки отождествляемой линии. И здесь происходит всё та же подмена понятий при подсчете числа элементов в ряду, что и при подсчете числа четных чисел в натуральном ряду. Только здесь каждой точке линии соответствует бесконечное число индексов точек квадрата. И вот почему.

Понятно, что в числах с бесконечным числом знаков разглядеть это весьма непросто, тем более что все они выглядят одинаково, поскольку одинаково начинаются – с нуля и запятой после него. Сравнивая числа – координату линии (q) и координатный индекс z(x, y), например, для q=x=y=0,1 (точное значение), мы находим z=0,11. Дискретность z в этом случае в 10 раз выше, чем дискретность q. То есть, между двумя дискретными значениями q=0,1…0,2 поместится десять подобных индексов. Если q=x=y=0,12345, то z=0,1122334455 и дискретность z уже в 100000 раз больше дискретности q. Следовательно, между точками q=0,11223…0,11224 (это точные значения) поместится 100000 индексов с дискретностью z. Другими словами, беря две координаты с некоторой дискретностью (числом знаков после запятой), мы получаем индекс с удвоенной дискретностью и степенным увеличением их количества. Сравнивая координаты линии и индексы, мы сравниваем фактически не их значения, которые предельно скрыты от нас и не могут быть равны, а их порядковые номера, которые для счетных множеств, разумеется, всегда найдут соответствие.

Описать этот процесс однозначно и максимально развернуто крайне сложно. Поэтому рассмотрим ещё один пример. Пусть отрезок [0, 1] состоит из миллиарда (109) точек, а соответствующий ему квадрат, следовательно, содержит 1018 точек. Эти числа являются так же и количествами их порядковых номеров, эквивалентами мощностей этих множеств. Сразу же обнаруживаем, что на линии точек меньше, чем в квадрате. Если постоянно удваивать количество точек вплоть до бесконечности, это отношение будет только возрастать.

Если для отождествления мы возьмём произвольную точку указанного квадрата, то её координатный индекс будет содержать 1018 знаков после запятой. И мы не имеем никакого права отождествлять этот индекс с точкой на линии, поскольку на ней допустимы только числа с 109 знаков после запятой, точек с такой дискретностью на линии просто нет. При увеличении дискретности квадрата и линии это расхождение будет расти по квадратичному закону.

Кстати, здесь мы наглядно обнаруживаем абсурдность сравнивания количества чисел натурального ряда и его части. Мы можем диагональным процессом Кантора тривиально перенумеровать точки линии и точки квадрата, даже не формируя для них индексы, и получим при этом равенство их количества. Однако мы только что увидели, что такое равенство противоречиво, а попросту его нет. Следовательно, и сравнивание количества членов множеств путем их раздельного пересчитывания – это опасный, ошибочный, некорректный метод, позволяющий получить любой желаемый результат, и которым следует пользоваться предельно продуманно.

Действительно, мы можем сравнивать точки линии и точки квадрата таким же простым раздельным пересчетом, получив в обоих случаях бесконечность. Но это разные бесконечности, бесконечности разной мощности. Напротив, возьмем какую-либо y-линию на квадрате и начнем пересчитывать на ней точки: 1, 2, 3 и так далее. Одновременно с этими точками будем пересчитывать и точки на линии: 1, 2, 3 и так далее. Мы тем самым однозначно отождествим все точки линии со всеми точками на одной из линий квадрата. Остальные линии квадрата, с другими координатами, разумеется, останутся без номеров. Это самый правильный способ пересчета и отождествления.

Итак, даже при ослаблении нашей аргументации мы приходим к выводу, который противоречит выводу Кантора об их равенстве. Два способа нумерации, основанных тождественно на одном и том же методе, приводят к несовместимым, противоположным выводам. Поэтому этот метод Кантора логически неверен, ошибочен. И вновь возникает риторический вопрос, какой же в этом случае метод верный? Методов группировки может быть сколько угодно, поэтому верным является только один метод – без группировки, то есть, сравнивать можно только равнозначные объекты – линию с линией. В этом случае вывод однозначный – множества точек линии и квадрата не равномощны. Самым простым и наглядным способом определения этого является простое наложение линии на квадрат и отождествление соприкоснувшихся точек.

Практически такая же противоречивая ситуация возникает и при отождествлении двух противоположных сторон квадрата: верхней и нижней, либо любых двух средних линий квадрата. Возникает совершенно противоестественная ситуации: эти пары линий вообще нельзя отождествить, поскольку нумерация их точек не имеет одинаковых значений. Верхняя сторона квадрата должна иметь по Кантору значения первой цифры после запятой всех точек, начинающиеся с 9, а нижняя – с 0, а средние, например, с 3 и 5. Две явно одинаковые линии оказываются несопоставимыми.

Стереографическая проекция

В заключение отметим, что один из истоков или примеров отождествления бесконечностей разной мощности можно обнаружить в механизме стереографической проекции, также фактически отождествляющей точку и отрезок. Рассмотрим соотношение между размерами двух отрезков, которые затем сожмем в точки:



Рис.3. Стереографическая проекция отождествляет отрезок и точку


Мы не описываем сущность стереографической проекции, её описание можно найти в литературе. Каждая проекционная линия, прямая делится проецируемой точкой окружности между полюсом и проекционной плоскостью на две части, например, l1 и l2. Возьмем частный случай, когда отрезок делится пополам, то есть, l1 = l2 = l. Проведем ещё одну проекционную линию под углом α к исходной линии. В этом случае на окружности образуется дуга, а на плоскости – отрезок. Проведем из проецируемой точки пересечения дополнительный отрезок между проекционными лучами параллельно плоскости из проецируемой точки. Обозначим полученный отрезок через b, а проекцию на плоскости – через a. Из подобия треугольников следует, что



Здесь знак неточного равенства взят из предположения, что отрезок b приблизительно равен длине дуги. Это не точное равенство, но в средней части окружности отрезок и дуга отличаются друг от друга незначительно, в конечное число раз. Теперь найдем предел этого отношения, когда угол между двумя проецирующими прямыми стремится к нулю:



Это очевидный и аналитически достоверный предел. Но при этом возникает вопрос: что же означает это отношение 2? Две проекционные прямые слились в одну, и эта прямая пересекает и окружность и плоскость в одной точке каждую. Что же означает это соотношение для двух разных точек? Если считать, что точка – это то, что не имеет частей, то ответ становится совершенно туманным. Выходит, что точки не имеют частей, но в разном количестве. В любом случае для утверждения, что точка на окружности спроектировалась в единственную тождественную точку на плоскости, четких, бесспорных оснований уже нет.

 

Однако это соотношение мы нашли для конкретного, среднего угла. А что если пару прямых, проектирующих лучей повернуть ближе к горизонтальному направлению? То есть, устремить к нулю не только угол между проецирующими прямыми, но и их средний угол к плоскости. В этом случае мы увидим, что отношение будет стремиться к бесконечности:



Вопрос о смысле этого отношения становится еще более острым. Если две точки – исходная, проецируемая и её проекция – отождествляются, тогда что означает это отношение? Изначально оно составлялось как отношение длины проецируемого отрезка и проекции, которые в дальнейшем уменьшением угла до нуля были преобразованы в точки. Хотя точка и не имеет частей, но величина соотношения определенно выглядит как количество проецируемых точек в проекции. Звучит весьма странно: проецирующий луч создаёт проекцию, имеющую явно не нулевые, не точечные размеры. Можно сколько угодно с этим не соглашаться, но как можно иначе рационально объяснить это соотношение?

Обычно бесконечно малые величины в алгебре характеризуются параметром порядка малости. Если две величины имею отношение конечной величины, то они считаются величинами одного порядка малости. Если отношение стремится к бесконечности, то величины имеют разный порядок малости. С учетом этого следует предположить, что стереографическая проекция окружности на плоскость некорректна, а проекциями её точек фактически являются плоские фигуры, отрезки.

Рассмотрим эту же ситуацию с другой точки зрения, не отождествляя дугу окружности и прямой отрезок. Для этого нам понадобится следующее интересное соотношение, теорема. Если к отрезку дуги провести по два луча из центра окружности (рис.4) и из любой точки окружности, кроме точек этой дуги, то угол между лучами в первом случае будет в два раза больше угла между лучами во втором случае. Приведем краткое доказательство этой теоремы.



Рис.4. Теорема об углах на дуге окружности


Итак, возьмем на окружности рис.4 некоторую произвольную дугу CB и проведем к ней две пары лучей – из центра и из полюса О. Проведем далее вспомогательный диаметр BD и линию CD. Обозначим одинаковыми буквами равные углы в равносторонних треугольниках у равных сторон. По условиям задачи нам задан некий центральный угол a. Докажем, что а = 2x. Из построений на рисунке видим:



Угол при вершине штрихового треугольника:



Углы при основании равностороннего треугольника.



Углы при основании равностороннего треугольника с искомым углом:



Составляем баланс углов в треугольнике с искомым углом x:



Подставляем условно известное значение угла f:



Раскрываем скобки



Подставляем значение заданного угла а



Упрощаем выражение



Что и требовалось доказать.

Согласно этой теореме, на рис.3 длина дуги окружности в пределах угла α равна 2αR, поскольку угловая величина дуги равна 2α. Длину линии проекции a в основании проекционного угла найдем как разницу сторон двух прямоугольных треугольников:




Отсюда находим величину а:



Как и выше, найдем отношение длины отсекаемой на окружности дуги к длине этого отрезка:



Найдем предел этой величины, когда каждый из углов стремится к нулю. В этом случае обе проекционные линии сблизятся до слияния, а их средняя линия будет стремиться к горизонтальному положению:



В общем случае мы получаем неопределенность, поскольку к нулю стремятся и числитель и знаменатель. Поэтому мы поступим следующим образом. Найдем эти пределы для нескольких конкретных значений среднего проекционного угла φ. В этом случае неопределенность не устраняется, но мы табличным методом построим соответствующие графики, которые визуально продемонстрируют наличие конечных пределов. Табличные значения сходятся удовлетворительно быстро, поэтому в пределах точности приложения Excel были получены следующие значения пределов для произвольно взятых значений угла φ:



Как видим, пределы существуют для любого значения проецирующей линии, угла проецирования. Поскольку вычисление предела функции неочевидно, приведём геометрический способ его вычисления для частного значения угла, рассмотренного на рис.3, значение которого определяется из геометрических соображений и равно 45о. Увеличим до бесконечности масштаб фрагмента рисунка в точке пересечения проецирующей прямой и окружности:



Рис.5. Увеличенный фрагмент рисунка 3


На рисунке угол φ =45о, а угол α→0. Как видим на рисунке, фрагмент проецируемой окружности выглядит вертикальной прямой, а две проецирующие прямые – параллельны. Следовательно, отрезки b – на окружности и параллельный проецирующей плоскости оказываются перпендикулярными и образуют равносторонний прямоугольный треугольник. Отсюда и следует значение предела lim = 0,5 в третьей строке таблицы пределов и в выражении (9). Очевидно, что геометрическое вычисление предела несложно сделать и для других углов проецирующего луча. Напротив, определить это значение аналитически, вычислением предела выражения:



довольно сложно. Подставим значение угла φ



Как видим, под знаком предела находится разность двух бесконечно больших величин, причем это не просто равномощные бесконечности, они тождественны. Действительно, в пределе α→0 мы имеем:



Что и можно записать как тождество



Это довольно интересное обстоятельство: две бесконечности равны, однако, тем не менее, дают разность 2. В общем-то, это свойство не уникально. Его легко показать на другом примере: n +2 = n, если n→∞. Здесь также две равные бесконечности, но при вычитании одной из другой мы получаем конечное число. Значение предела (10) нам известно, он равен 2, то есть при α→0 мы имеем



Получается, что тангенс в знаменателе, меньший единицы на бесконечно малую величину, вносит в значение бесконечно большой величины весьма существенный вклад, увеличивая её ровно на 2. Прямое вычисление выражения (10) в приложении Excel при уменьшении угла α до величины 10–9 дало устойчивое стремление значения предела к 2 с погрешностью 10–8. Дальнейшее уменьшение угла не имеет смысла ввиду ограниченной точности вычисления функций приложением.

Таким образом, можно достаточно уверенно заявить, что стереографическое проецирование, преобразование фактически отождествляет точку и линию. И только единственная – вертикальная – проекция отождествляет точку на сфере с точкой на плоскости – это точка их касания. Верхняя точка, полюс проецируется фактически в линию бесконечной длины.

Здесь мы рассматривали проецирование круга. Очевидно, что точка сферы проецируется не в отрезок, а в плоскую фигуру. В этом случае явно напрашивается предположение о форме самого проецирующего луча, который теперь уже формально может и даже обязан иметь некое сечение: круглое, квадратное, в форме звезды и так далее.

Вместе с тем, вполне ожидаемо может возникнуть возражение: а почему, собственно, мы рассматривали две проецирующие линии? В традиционном варианте линия всегда одна, поэтому, казалось бы, проекцией каждой точки может быть только точка. Сразу же можно заметить, что это весомый довод в пользу формализма Кантора, который весьма схожим способом отождествил множество точек линии с множеством точек плоской фигуры – квадрата.

Ответ достаточно простой. Рассмотренный способ показывает, что любые две смежные бесконечно близкие точки окружности (сферы) на проекционной плоскости позволяют поместить между ними некоторое количество, вплоть до бесконечности, таких же точек. Если рассматривать дискретное пространство, вплоть до планковских размеров, то появление на проекции дополнительных элементов практически неразрешимая проблема. Единичный проекционный луч просто делает эту проблему незаметной.

С другой стороны, стремление к нулю угла между рассмотренными проецирующими лучами отождествляет их, превращает в одну линию, единый луч. И в этом случае возникает важный встречный вопрос: что же тогда означают вычисленные пределы? Какой математический, физический и даже философский смысл имеют эти величины? Ответ очевиден: это скрытное канторовское отождествление точки и линии, того, что не имеет частей, с тем, что может делиться на части.