Memento Mori

Text
Read preview
Mark as finished
How to read the book after purchase
Font:Smaller АаLarger Aa

Unsterbliche Zellen, die den Tod bedeuten

In der DNA einer Familie mit erblicher Vierfingrigkeit ist gegenüber der DNA anderer Menschen eine Stelle verändert. Genauso verhält es sich mit der nicht alternden Zelle. Etwas in ihr ist verändert. Eine solche Änderung innerhalb des DNA-Informationsfadens nennt man Mutation. Jede Bauanleitung jeder Zelle kann mutieren. Das Rezept für Fünffingrigkeit kann sich ebenso verändern wie das für Altern oder jedes andere.

Eine DNA-Veränderung oder Mutation ist nicht von vornherein gut oder schlecht. Der erblich bedingte Verlust eines Fingers war beispielsweise die Voraussetzung dafür, dass sich die Hufe von Pferden, Milchkühen, Giraffen und Kamelen entwickeln konnten.

Niemand bezweifelt, dass Hufe für das Laufen auf vier Beinen vortrefflich geeignet sind. Der Verlust des Alterns hingegen ist nur für eine einzelne Zelle von Vorteil. Sie vervielfältigt sich rasch und erinnert vollkommen an die unsterblichen Urtiere, die noch vorgestellt werden. Das Krebsgeschwür ist eine Ansammlung praktisch gleicher, unsterblicher Zellen. Durch die ständige ungeregelte Teilung einer einzigen mutierten Zelle und ihrer Nachkommen kommt schließlich der ganze Körper aus dem Gleichgewicht: Das Krebsgeschwür drückt Leitungsbahnen zu, behindert die Funktion von Organen oder entstellt unter Umständen die Erkrankten.

Es gibt sehr viele Möglichkeiten, wie aus einer normalen Zelle eine Krebszelle werden kann. Entsprechend gibt es sehr viele verschiedene Arten von Krebs. Wegen der vielen Entstehungs- und Erscheinungsformen von Tumoren wird es wohl niemals eine Behandlungsmethode gegen alle Krebsarten geben. Es gibt auch kein vorbeugendes Mittel dagegen. Das Zusammenspiel der Zellen des Körpers kann jederzeit aus dem Gleichgewicht geraten. Der Traum vom Sieg über den Krebs wird sich vermutlich nicht erfüllen. Ein Gutes hat die Krebsforschung aber in jedem Fall: Sie bringt unser Wissen um den Aufbau und die Vorgänge in Zellen seit dreißig Jahren enorm voran. Ohne die Krebsforschung wären sehr viele biomedizinische Fortschritte nicht (oder nicht so rasch) möglich gewesen. Seit wir Zellen besser verstehen, können wir viele andere Krankheiten behandeln, die eigentlich nicht unter den Begriff Krebs fallen. Außerdem haben wir vieles über Zellen gelernt, das wir bislang noch nicht praktisch nutzen konnten. So ist es oft in der Forschung: Versuche, die einem bestimmten Zweck dienen sollen, bringen ein anderes Wissensgebiet voran. Und umgekehrt kommt die Lösung für ein teuer und lange untersuchtes Problem oft aus einem Bereich, von dem man es nie erwartet hätte. Der Aufbau der DNA, der Geheimschrift des Lebens, wurde zum Beispiel erst durch rein physikalische Versuche (Röntgenbeugungsmuster) endgültig aufgeklärt.

Die vorprogrammierte Lebensdauer

Um den Tod zu verstehen, muss man etwas über das Altern wissen. Lange glaubte man, dass Zellen einfach sterben, weil sie nach einiger Zeit zu viele Abfallstoffe in sich tragen. Zellabfallstoffe entstehen durch Atmung, Verdauung und Bewegung. Diese Vorgänge benötigen Energie, und Energieerzeugung verursacht Abfall. Was den Atomkraftwerken die alten Brennstäbe sind, sind den Zellen unverwertbare winzigste Nahrungs- und Zellbestandteile. Diese Reste werden – ganz ähnlich wie verbrauchte Brennstäbe – sicherheitshalber umhüllt. Die Zelle kann den giftigen Müll oft nicht ausstoßen, deshalb bleibt er in ihr liegen. Man kann sich durchaus vorstellen, dass die Zelle sich auf diese Weise langsam selbst vergiftet, bis sie stirbt. Diese Idee soll im 16. Jahrhundert schon der streitbare Arzt Philippus Theophrastus Paracelsus vorgetragen haben. Ende des 19. Jahrhunderts wiederholte sie der Zellbiologe Elias Metschnikow. Als Biologe wundert man sich allerdings ein wenig über das (gewollte?) Vergiftungsmissgeschick der sonst so elegant gesteuerten Zellen.

Die berühmten Biologen Charles Darwin und August Weismann gingen Ende des 19. Jahrhunderts davon aus, dass eine Zelle sich ähnlich wie eine Maschine abnutzt. Dass dieser Vergleich hinkt, zeigt aber schon das Beispiel eines Muskels, der sich bei Nichtbenutzung, etwa im Gipsverband, zurückbildet. Eine Maschine würde so etwas nicht tun. Wenn eine Zelle sich schon wie eine Maschine verhalten soll, muss sie alle oder zumindest viele maschinenähnliche Eigenschaften zeigen und nicht bloß eine einzelne.

Eine wesentlich bessere Erklärung für den Tod der Zellen fanden die Forscher schließlich auf der Schwelle zum 20. Jahrhundert, als sie eine Blutzelle in einem Glasschälchen züchten wollten. Sie setzten eine junge, lebendige Zelle in einen Flüssigkeitstropfen, stellten eine für das Wachstum günstige Temperatur ein, gaben Nährstoffe zu und sorgten für Sauerstoff zum Atmen. Die Zelle starb. Daraufhin verbesserten die Wissenschaftler die Lebensbedingungen der Zelle. Sie füllten eine Glasschale mit einem Gelee aus gekochten Algenzutaten und setzten die Zelle darauf. Nichts geschah. Sie gaben recht wahllos weitere Nahrungsstoffe zu. Nun überlebte die Zelle. Sie entwickelte sich aber nicht weiter. Da kam einer der Forscher auf die Idee, dem Nährboden Blutserum zuzusetzen (das Serum ist der Teil des Blutes, der nach Wegnahme der roten Blutkörperchen übrig bleibt). Von da an gedieh die Zelle hervorragend, das heißt, sie vermehrte sich. Eine in Kultur gehaltene Mauszelle zum Beispiel teilte sich in geeigneter Umgebung bis zu zwanzigmal. Warum, konnte sich zunächst niemand erklären. Es fiel jedoch auf, dass die Zellen sich bei Zugabe von einem Prozent Serum nicht so oft teilten wie bei einem Serumanteil von zehn Prozent. Das Serum musste das entscheidende Geheimnis des Wachstums und der Zellteilung in sich bergen.

Zur gleichen Zeit hatte der Chirurg, Zellkulturspezialist und Nobelpreisträger Alexis Carrel zusammen mit seinem Kollegen Albert Ebeling vom Rockefeller-Institut für Medizinische Forschung in New York Bindegewebszellen (Fibroblasten) aus einem Hühnerherz in körperwarmer Nährlösung am Leben erhalten. (Hühnchen – vor allem sehr frühe, ungeschlüpfte Entwicklungsstadien – benutzt man immer noch gerne als Forschungsmaterial, unter anderem, weil man Hühnereier leicht bebrüten und die Embryonen im teils vorsichtig geöffneten Ei gut untersuchen kann.) Carrels Kultur hielt sich sehr lange. »Am 17. Januar 1921«, schrieb er stolz seinem Kollegen Raymond Pearl, »werden die Bindegewebszellen des Hühnerherzens neun Jahre alt.« Erst nach insgesamt vierunddreißig Jahren warfen die Forscher die Schalen mit der immer noch lebenden Zellkultur – freiwillig und ohne besonderen Grund – fort.

Ursprünglich hatte sich Carrel vor allem für die Lagerung von Geweben (und nicht für ihre Züchtung) interessiert. Als der Chirurg einem Hund ein »fingerlanges Stück« der Bauchschlagader durch ein ebenso langes Stück einer Katzenvene ersetzte, benutzte er erstmals Gewebe, das zwanzig Tage auf Eis gelegen hatte. Die Operation gelang, und die Ader heilte ein. Nun wurde Carrel mutiger. Er wusste, dass sein Kollege Wentscher schon 1894 Haut übertragen hatte, die fünfzig Tage auf Eis gelegen hatte. Auch einen Versuch des Mediziners Ljungren, der Haut einen Monat außerhalb des Körpers aufbewahrt hatte, bewunderte Carrel. Als schließlich die ersten Organübertragungen des Forschers Garrè bekannt wurden, gab es für Carrel kein Halten mehr. Was ihm mit Adern gelungen war, musste auch mit größeren, sogar viel größeren Gewebestücken gelingen. Zusammen mit seinem Kollegen Guthrie brachte er es schließlich so weit, dass er einem Tier beide Nieren mit der zuführenden Bauchschlagader, der abführenden Hohlvene, dem Harnleiter und der Harnblase entnehmen und einem anderen Tier erfolgreich und dauerhaft einsetzen konnte. Aber auch mit diesem Kunststück war Carrel noch nicht zufrieden. Er tat sich mit seinem Kollegen Burrows zusammen und verbesserte einen Versuchsaufbau des Amerikaners Ross Granville Harrison, der 1907 Gewebestückchen von Fröschen in eine Nährlösung getaucht und zur Weiterentwicklung gebracht hatte. Harrison, damals Forscher an der amerikanischen Universität Yale, war damit der Erfinder der Gewebezüchtung. Carrel übertraf ihn jedoch, vor allem wegen seiner unermüdlichen Ausdauer.

Hermann Dekker beschrieb 1913 das Zuchtverfahren von Carrel folgendermaßen:

Von dem Gewebe wird ein kleines Stückchen von 1/10 – 1/2 mm Durchmesser, sagen wir von Stecknadelkopfgröße, auf ein Deckgläschen gebracht und mit dem präparierten frischen Plasma [Blutflüssigkeit ohne Blutkörperchen] bedeckt. Sofort wird dieses Deckgläschen, die Kultur nach unten, mit Paraffin auf einen hohlgeschliffenen Objektträger gekittet (um die Kultur feucht zu erhalten) und in einen Brutschrank gebracht. In diesem ›hängenden Tropfen‹ geht das Wachstum vor sich. Die ganze Prozedur erfordert rasches Handeln, ist das Werk von Augenblicken, damit das Gewebe nicht geschädigt wird und um den Zutritt von Keimen zu verhindern. Carrel und Burrows haben seit dem Jahre 1910 auf diese Weise fast alle Gewebe von Erwachsenen, von Hund, Katze, Ratte, Kaninchen, Huhn, außerdem Krebszellen vom Menschen kultiviert.2

Innerhalb von zwei Jahren wurde weltweit in allen großen Zeitungen über Carrels Versuche berichtet. Meist wurden die Experimente jedoch übertrieben: Aus den stecknadelkopfgroßen Gewebestücken wurden lebende Arme und Beine, die angeblich in Kulturen schwammen. Den wirklichen Wert der Gewebezüchtung, die eines Tages die molekulare Zellforschung ermöglichen würde, konnte damals noch niemand erkennen.

Die Forscher sind so närrische Käuze«, schrieb Hermann Dekker, »dass sie zunächst gar nicht nach dem praktischen Wert ihrer Forschungen fragen. Es genügt ihnen, wenn ihnen im stillen Laboratorium der Kopf heiß und das Herz warm wird in der großen Freude über die stillen Erfolge ihrer Arbeit.3

 

Ein sprachliches Missverständnis, wie beim etwas irreführenden Begriff »Gewebezüchtung«, liegt auch dem Bericht zugrunde, wonach der russische Forscher Krakow, ebenfalls zu Beginn des 20. Jahrhunderts, das Ohr eines Kaninchens und einen menschlichen Finger über die Zeit gerettet haben soll, indem er sie trocknete und später in Wasserdampf »zum Leben« erweckte. Diese Versuche lösten damals große Begeisterung aus. Antoni Nemilow, Professor für Anatomie und Zellkunde der Haustiere, schrieb dazu 1927 im damaligen Leningrad:

Der Versuch der Aufziehung einzelner Teile des Körpers außerhalb des Organismus bedeutet eigentlich schon einen Sieg über den Tod, denn er hat klar bewiesen, dass die Wissenschaft stärker ist als der Tod. Mag das Stückchen Rücken, das im Laboratorium von Carrel schon 15 Jahre lebt und wächst, auch sehr klein sein, es ist dem Tode, der bis dahin als unbesiegbar und allmächtig gegolten hat, entrissen. Dieses wachsende und lebende Stückchen Vogel widerlegt bedingungslos und ein für alle Mal den Aberglauben und alle Märchen von der höheren Gewalt des Todes, der über Willen und Vernunft des Menschen stehe.4

Obwohl es sich nicht um einen Hühnchenrücken handelte, sondern um einzelne Zellen aus einem Herz, kann man Nemilows Begeisterung verstehen. Tatsächlich bewunderten viele Wissenschaftler jener Zeit vor allem die Schönheit der Gewebekulturen, das heißt die Tatsache, dass es überhaupt möglich war, Zellen in Schalen zu züchten.

Zwischen 1940 und 1960 wurde die Gewebekultur von der Spielerei Einzelner zur Chefsache. Mittlerweile wusste man, dass die kleinsten Vorgänge in den Zellen die Grundlage des Lebens darstellen. Diese Stoffwechselabläufe wollte man nun enträtseln. Deshalb begannen sehr viele Labors damit, Zellkulturen als Ausgangsmaterial für ihre Forschungen zu züchten.

Anfang der Sechzigerjahre beobachtete Professor Leonard Hayflick, dass sich Bindegewebszellen in Schalen ungefähr fünfzigmal teilen (mindestens vierzig- und höchstens sechzigmal). Kurz vor Ende dieses Teilungsprozesses beginnt das so genannte »Phase-3-Phänomen«: Die Zellen teilen sich zuletzt, in Phase 3, immer langsamer (Alter) und sterben schließlich (Tod). In den Phasen 1 und 2 wachsen die Zellen mit gleich bleibender Geschwindigkeit heran, wenn man sie lässt. Sobald normale Zellen allerdings die Oberfläche ihrer Wachstumsschale mit einer einlagigen Schicht bedecken, beenden sie ihre Vermehrung vorläufig. Krebszellen teilen sich dagegen munter weiter. Solche unbegrenzt vermehrungsfähigen Zellen – zwei bekannte Typen tragen die Bezeichnungen »HeLa« und »L« – waren jahrzehntelang die Objekte, an denen die Krebsforschung stattfand. »Unsterbliche Zellen wie HeLa und L«, sagte Professor Hayflick schon in den Sechzigerjahren voraus, »haben eine oder mehrere anormale Eigenschaften.« Daraus ergab sich eine wichtige Erkenntnis: Kennt man erst einmal alle anormalen Eigenschaften, versteht man auch die Krebsentstehung. Vielleicht kann man dann vorbeugende Maßnahmen entwickeln, um Krebserkrankungen endgültig zu verhindern.

Zellen haben ein Gedächtnis

Das war auch Leonard Hayflick von Anfang an klar. Um die Zellen möglichst lange benutzen zu können, züchtete er die sterbliche Linie WI-38 heran, deren Kulturen er in viele kleine Portionen teilte und seit 1962 in flüssigem Stickstoff bei minus 192 Grad Celsius aufbewahrte. Zugleich konnte Hayflick die Zellen auf diese Weise an seine Kolleginnen und Kollegen in der ganzen Welt versenden, wann immer sie dies wünschten. (Es ist unter Wissenschaftlern üblich, Proben stets kostenlos auszutauschen.) Während WI-38 in den Siebzigerjahren zur bestuntersuchten lebenden Zelleinheit der Erde wurde, fiel Hayflick etwas Erstaunliches auf. Trotz ihres Eisschlafes konnten die Zellen sich merken, wie oft sie sich vor dem Einfrieren geteilt hatten. Taute man die Zellen auf, so machten sie nur noch genau so viele Teilungen durch, wie sie es auch unter normalen Bedingungen getan hätten. Es gibt also einen Zähl- und Speichermechanismus, der die Zellteilungen festhält. Ein solches inneres Zählwerk hatte man zwar in den Zellen erwartet, aber dass die Zelluhr so lange funktioniert, war eine Überraschung. Hayflick bestätigte 1990 stolz: »Wir haben in den letzten achtundzwanzig Jahren aus hundertdreißig Gefäßen wieder Zellen aufgetaut. Ihr Gedächtnis ist noch genauso gut wie 1962.«

Dieses Zellgedächtnis funktioniert auch bei Zellen, die aus einem lebenden Körper stammen. Je älter ein Mensch zum Zeitpunkt der Zellentnahme ist, desto geringer ist die Zahl der Zellteilungen in der daraus hergestellten Kultur. Nun wissen wir aber, dass sich die vielen Zellen eines Menschen im Laufe seines Lebens mehrmals komplett erneuern. Die innere Uhr tickt also nicht nur in jeder einzelnen Zelle und zählt deren Teilungen. Jede Zelle muss schon bei ihrer Entstehung darüber informiert sein, wie alt der übrige Körper ist.5

Jede Zelle des Körpers geht aus einer anderen, meist gleichartigen Zelle hervor. Man kann also annehmen, dass die Information über den Zustand des Körpers, in dem die Zellen leben, beim zellulären Schichtwechsel weitergegeben wird. Wie das im Einzelnen passiert, ist noch unbekannt. Einige Zellzählwerke und -uhren sind mittlerweile entdeckt worden. Man weiß aber immer noch nicht, welche molekulare Uhr zu welchem Ereignis, zum Beispiel zur Zählung der Zellteilungen, gehört.

Je älter ein Mensch ist, desto seltener können sich seine Zellen in einer künstlichen Kultur teilen. Gilt diese Regel für alle Zellen? Soweit es Zellen aus einem gesunden Körper sind, lautet die Antwort ja. Wie steht es aber mit Zellen von Menschen, die zu früh altern? Zwei Krankheiten, bei denen eine stark verfrühte Vergreisung eintritt, sind die Progerie und das Werner-Syndrom. Kinder mit Progerie sehen bereits mit neun Jahren aus wie Siebzigjährige, bei Patienten mit dem Werner-Syndrom setzt der körperliche Verfall einschließlich Arterienverkalkung, brüchiger Knochen und eines Hangs zur Zuckerkrankheit etwas später ein. Man hatte ausgerechnet, dass die Zellen in Gewebeteilen eines mit dem Werner-Syndrom geborenen Menschen sich in Kultur höchstens noch etwa zwanzig bis vierzigmal teilen müssten. Hayflicks Kollege S. Goldstein fand diese Frage besonders spannend und machte, wie es in den Naturwissenschaften üblich ist, die Probe aufs Exempel. Die Werner-Zellen teilten sich in Wirklichkeit nur noch höchstens achtzehn mal. Auch in dieser Untersuchung zeigte sich, dass das Altern der Werner-Kinder schneller als erwartet voranschritt. Mittlerweile weiß man mehr über die schlimme Erkrankung, und vielleicht gelingt es dadurch bald, die betroffenen Kinder von ihrem Leid zu erlösen.

Ein tödlicher Überlebenscocktail

Jeder Molekularbiologe oder -mediziner kann heute Wachstumsfaktoren herstellen. Er baut in den Informationsfaden von Bakterien die entsprechende Bauanleitung ein. In einer Flasche vermehren sich die kleinen Lebewesen samt der Zusatzbauanleitung und sondern dabei das gewünschte Lebenselixier ab.

Selbst wenn jeder Schluck dieses Getränks mehrere tausend Euro kostet – wer würde im Angesicht des Todes zögern zuzugreifen? Der Nervenwachstumsfaktor als Allheilmittel gegen den Abbau von Nerven bei der Alzheimerschen Krankheit wäre zweifellos ein Verkaufsschlager.

Leider ist der Cocktail – vorausgesetzt, er wirkt – giftig. Sterbende Zellen oder solche, die ihr Entwicklungsziel erreicht haben, würden sich weiterentwickeln, obwohl dies im Gesamtplan des Körpers nicht vorgesehen ist. Dadurch entstünden zum Beispiel unerwünschte Kontakte zwischen Nervenzellen, die normalerweise nicht zusammengehören. Eine Verbindung vom Sehnerv zum Hörbereich des Gehirns könnte etwa bewirken, dass man Farben hört. Andere falsch gewachsene Nerven können die Muskulatur unnötigerweise anregen. Dauernde Krämpfe wären die Folge. Wie neuere Forschungsergebnisse zeigen, führen falsch ausgeschüttete Wachstumsfaktoren beispielsweise auch zu Rheuma.

Der »Überlebenscocktail« aus Wachstumsfaktoren erfüllt seinen Zweck also nicht, weil die ausgewogenen Wechselwirkungen innerhalb des Körpers durch die willkürliche Zugabe der Überlebensproteine aus dem Gleichgewicht geraten würden.

Anfangs konnte man sich nur schwer vorstellen, dass die Entwicklung einer Zelle von einer so aberwitzig geringen Stoffmenge wie einigen Tropfen Blutserum abhängen sollte. Wie sich später zeigte, entscheiden noch nicht einmal alle Zutaten der Tropfen, sondern nur einzelne Bestandteile aus ihnen über Teilung oder Nichtteilung. Die guten Geister bei der Weiterentwicklung von Gewebekulturen, so stellte sich heraus, waren so genannte Wachstumsfaktoren.

Ihre enge Verknüpfung mit der Zellteilung kommt dadurch zustande, dass sie das Okay für viele Abläufe geben, die vor der eigentlichen Verdoppelung ablaufen. Fehlt ein Wachstumsfaktor als Informationsempfänger und -übermittler, so stockt das Wachstum der Zelle. Dann nützt es auch nichts mehr, wenn die äußeren Bedingungen (etwa das Nahrungsangebot oder Befehle anderer Zellen) eine Zellteilung wünschenswert oder zwingend machen. Wenn die Information mangels Wachstumsfaktor versackt, erfahren die übrigen Zellbestandteile nicht, dass sie nun gefordert sind. So kommt es auch, dass man Zellen in wachstumsfaktorfreier Zellkultur wochenlang halten kann, ohne dass sie sich teilen. Die Zellen finden dann alle Nährstoffe vor und »fühlen sich wohl«, sie können aber nicht an ihre innere Schaltzentrale melden, dass die Gelegenheit für Wachstum und Teilung gekommen ist.

Proteine sind Wachstumsfaktoren; jeder dieser Faktoren wirkt nur auf bestimmte Zelltypen, und jede Zellart benötigt eine genau auf sie abgestimmte Zusammensetzung von Wachstumsfaktoren. Der Körper stellt an festgelegten Orten spezielle Wachstumsfaktoren zu bestimmten Zeiten her. Dort liegen Zelltypen, die für eine Sorte von Wachstumsfaktoren empfänglich sind und sich an dieser Stelle vermehren beziehungsweise verändern sollen. Wie gering der Bedarf an Wachstumsfaktoren tatsächlich ist, zeigt das Zuckerdosenbeispiel: Man wirft einen Zuckerwürfel ins Meer und nimmt an, dass sich der gelöste Zucker auf alle Ozeane der Erde verteilt. Man kann dann aus jedem Meer der Welt eine Tasse Wasser schöpfen und findet darin noch zwei Moleküle des Würfelchens. In dieser Größenordnung liegen auch die Mengen von Wachstumsfaktoren, die vom Körper genutzt werden.6

Eines Tages versuchte man, eine junge Nervenzelle in einem Glasschälchen dazu zu bringen, dass sie sich auf ein Röhrchen ausrichtete. In ihre Nähe tropfte man mit diesem Röhrchen eine winzige Menge eines Wachstumsfaktors für Nerven. Nach einiger Zeit bildete die Zelle einen Fortsatz und reckte sich zum Röhrchen. Zog man das Röhrchen etwas beiseite und tropfte wieder ein wenig Wachstumsfaktor hindurch, folgte der Nerv abermals.

Die Wachstumsfaktoren fördern also nicht nur die Fortentwicklung einer Zelle, sondern die Zelle sucht auch aktiv ihren Wachstumsfaktor auf. Sie folgt einem Weg, der durch einen Überlebensstoff gesteckt ist. Zellausläufer, die keinen Wachstumsfaktor vorfinden, verkümmern.