Разведчики внешних планет. Путешествие «Пионеров» и «Вояджеров» от Земли до Нептуна и далее

Text
5
Reviews
Read preview
Mark as finished
How to read the book after purchase
Font:Smaller АаLarger Aa

«Большой тур» начинается

Второй и последний отчет Майкл Минович выпустил в феврале 1965 г. – он был посвящен использованию гравитационного поля Юпитера для полетов к дальним планетам, выхода из плоскости эклиптики и отправки зонда в окрестности Солнца. Все эти идеи были реализованы в период со второй половины 1970-х до начала 1990-х гг.

Автор указывал на возможность перелета по трассе Земля – Юпитер – Сатурн в 1976 г. и Земля – Юпитер – Плутон в 1977 г. с продолжительностью полета до Плутона всего в семь лет. Один из представленных в отчете вариантов предусматривал запуск КА 8 сентября 1977 г. с возможностью дальнейшего полета от Юпитера к Сатурну. Расчет этой траектории, однако, закончен не был: в распоряжении Миновича не было эфемерид планет на период после 1980 г.

Не был он, кстати, и первым, кто опубликовал предложение о гравитационном маневре у Юпитера: Максвелл Хантер, знакомый с работами Миновича, еще в 1964 г. предложил использовать такой пролет для быстрого достижения внешних планет. А осенью 1965 г. с аналогичной идеей выступил аспирант Калифорнийского технологического института Гэри Фландро, приглашенный в JPL продолжить исследования Майкла Миновича.

Он выполнил расчеты различных вариантов пролета внешних планет с использованием поля тяготения Юпитера в 1975–1981 гг. Фландро показал, в частности, что при запуске в 1976–1978 гг. можно осуществить последовательный пролет всех четырех внешних планет – Юпитера, Сатурна, Урана и Нептуна – при весьма скромной отлетной скорости. Фландро дал этой поистине головокружительной траектории название Grand Tour («Большой тур» или «Великое путешествие»), хотя проекты с таким наименованием уже существовали[3]. Было ясно, что это уникальная возможность: следующего благоприятного периода для пролета всей четверки больших планет пришлось бы ждать почти 180 лет.

Наибольший интерес к «Большому туру» проявила, что неудивительно, Лаборатория реактивного движения, базирующаяся в Пасадене, в Калифорнии. Уже в декабре 1966 г. руководитель перспективного планирования JPL Хомер Стюарт, говоря современным языком, пропиарил проект «межпланетного бильярда» в журнале Astronautics & Aeronautics. Там же освещались дальнейшие этапы работы над проектом.

Детальное изучение траекторий показало, что пуски по трассе «Большого тура» в принципе возможны в период с 1976 по 1980 г. Как установил в 1967 г. Брент Силвер из Lockheed Missiles and Space Company, в наибольшей степени траектория зависела от того, на каком расстоянии от Сатурна можно будет пройти. Траектории, проходящие сквозь кольца Сатурна, нельзя было рассматривать всерьез из-за высочайшей вероятности гибели аппарата от столкновения с образующими их частицами. Пролет между нижним краем колец и поверхностью Сатурна, по так называемой внутренней траектории, увеличивал отлетную скорость и сокращал продолжительность маршрута до Нептуна на два-три года по сравнению с пролетом выше колец, но условия в этой области были неизвестны, и навскидку шансы благополучно миновать ее оценивались не более чем в 50 %.

Оптимальное время старта к Юпитеру повторялось с интервалом в 13 месяцев. Почему так? Будем считать орбиты обеих планет круговыми. Земля движется вокруг Солнца с угловой скоростью 1 оборот за год, а Юпитер – 1/12 оборота за год. Разность угловых скоростей составляет 11/12, а значит, одно и то же оптимальное взаимное положение двух планет повторяется через 12/11 года[4]. В реальности обе орбиты немного эллиптические, эллипсы несоосны, а плоскость орбиты Юпитера наклонена на 1,3° к эклиптике. Поэтому оптимальные даты слегка «плавали», а требуемые отлетные скорости заметно отличались. Минимальными они были в 1976 г., а максимальными – в 1980 г.

Разумеется, с каждым годом Сатурн и остальные внешние планеты смещались, отставая от Юпитера; отсюда вытекали дополнительные ограничения на условия встреч. Чтобы при пуске в 1976 г. пройти по «внутренней» траектории у Сатурна, нужно было сначала пролететь на высоте всего 1500 км над Юпитером. Опять же, это расценивалось как неприемлемый риск – как физический, в силу неизвестных пока опасностей, так и баллистический – такую точность прицеливания было трудно реализовать. В 1977 и 1978 гг. полеты по «внутренним» траекториям были намного более выгодными. Сходным образом лучшие из «внешних» траекторий получались в 1976 и 1977 гг.; после этого аппарат прошел бы слишком далеко от Юпитера, чтобы изучить его детально.

Дальнейшие уточнения показали, что наиболее благоприятны пуски в 1977 и 1978 гг. по «внутренней» траектории – условные обозначения 1977I и 1978I, а также в 1977 г. по «внешней» траектории 1977E. Их основные данные приведены в таблице 2.


К концу 1960-х уже не было проблемой придумать и рассчитать межпланетную траекторию с гравитационными маневрами, пусть даже очень хитроумную. Намного сложнее и дороже были следующие шаги на пути к реализации проекта. Имеет ли полет по предложенной траектории очевидную ценность? Каким должен быть облик космического аппарата, способного пройти по ней? Какую научную программу он мог бы выполнить и какие приборы нужно для этого сделать и поставить? Какой носитель потребуется для того, чтобы отправить его в долгое путешествие?

Подготовив ответы на вопросы о потенциальной реализуемости проекта, разработчики должны были доказать необходимость его осуществления, то есть убедить в этом руководство NASA и научное сообщество, которому больше импонировали малые краткосрочные миссии с быстрой отдачей, а затем и правительство, чтобы получить необходимые – и немалые – средства.

В течение нескольких лет было предложено несколько вариантов реализации «Большого тура» и других перспективных проектов изучения дальних планет с аппаратами разного класса и на носителях разной грузоподъемности.

Верхнюю планку возможностей определяла комбинация двух ступеней ракеты «Сатурн V» и третьей ядерной ступени NERVA с тягой 34 тс и удельным импульсом 825 секунд – почти вдвое бóльшим, чем у штатной кислородно-водородной ступени[5]. Вместе они могли отправить в облет Юпитера полезный груз массой 25 т, в то время как обычный «Сатурн V» – лишь примерно 9 т. Для масштаба: самым тяжелым американским межпланетным аппаратом 1970-х гг. был марсианский «Викинг» (Viking) – чуть более 3500 кг.

Центр космических полетов имени Маршалла, головной разработчик «Сатурна V», предлагал космический комплекс исключительной сложности. Он должен был не просто пройти трассу «Большого тура», но дополнить «обязательную программу» сбросом зондов в атмосферы Юпитера и Сатурна и выходом отделяемых спутников на орбиты вокруг них, а также отправкой отдельного зонда к Плутону.

«Сатурн V» вышел в 1967 г. на летные испытания. Агентство заказало 15 экземпляров носителя под программу «Аполлон» и в проекте бюджета на 1970 финансовый год (ф.г.) просило средства на начало производства еще трех летных машин, но не было уверено, что их получит[6]. Двигатель NERVA ожидался примерно в 1975 г., а ракетная ступень с ним – к 1978 г., в лучшем случае – к 1977-му. На доводку ядерного двигателя до летного статуса требовалось примерно 600 млн долларов, а на разработку ступени – 500 млн. И затем весь дорогостоящий комплекс «Большого тура» пришлось бы поставить на первую летную ступень со всеми сопутствующими рисками.

В общем, Управление космической науки и приложений NASA не могло открыто отказаться от такой возможности, не внушив законодателям сомнений в необходимости ядерной ступени, но уже в марте 1969 г. сообщило Конгрессу, что «Большой тур» можно реализовать и без нее. И хотя агентство пока не было готово предъявить ни оптимального варианта программы, ни носителя, ни оценки стоимости, заместитель администратора NASA по космической науке Джон Ногл все-таки дал понять, что NASA очень серьезно просчитывает проекты на базе ракеты «Титан-Центавр»[7].

 

Выбор носителя и здесь был непрост, потому что затрагивал межведомственные интересы. Носители семейства «Титан» были созданы по заказу ВВС США для запуска военных аппаратов. NASA намеревалось запустить в 1971 г. два тяжелых межпланетных аппарата с целью мягкой посадки на Марс на своей ракете «Сатурн IB» с дополнительной ступенью «Центавр» (Centaur). Этот проект тоже назывался «Вояджер» и имел несчастливую судьбу: в октябре 1965 г. отменили разработку носителя, а в октябре 1967 г. Конгресс прекратил финансирование марсианского аппарата. Проект возродился год спустя под новым именем «Викинг» и с новым носителем: NASA договорилось с ВВС об установке ступени «Центавр» на военный носитель «Титан IIID». Правда, стоимость такой комбинации была головокружительной: 43 млн долларов на работы по интеграции и 19 млн за каждый летный экземпляр, в то время как серийный «Атлас-Центавр» обходился в 10 млн, но зато и грузоподъемность при запуске к Марсу с отлетной скоростью около 12 км/с достигала 3700 кг. Новый носитель «Титан-Центавр» получил еще два официальных обозначения – «Титан IIIE» и «Титан 23E».

Джон Ногл обещал принять решение о характере «Большого тура» в августе-сентябре 1969 г., чтобы затребовать необходимое финансирование начиная с 1971 ф.г. Он также отметил, что, помимо основной версии с пролетом всех четырех внешних планет, имеется ряд возможностей для посещения только двух или трех – эти сценарии получили название «мини-туры».

25 марта 1969 г. сенаторы заслушали доклад Дональда Харта, директора планетарных программ в управлении Ногла. Он сообщил, что не далее как в январе была найдена очень перспективная траектория Земля – Юпитер – Сатурн – Плутон со стартом в 1977 или 1978 г. продолжительностью полета семь лет. Столь же быстро можно было бы пройти маршрут Земля – Юпитер – Уран – Нептун со стартом между 1978 и 1980 гг.

В мае 1969 г. Рабочая группа по внешним планетам, созданная при Управлении космической науки и приложений NASA, поддержала идею разделить «Большой тур» надвое и исследовать двумя аппаратами все пять дальних планет. Подробное изложение нового сценария сделал Джеймс Лонг из Отдела перспективных проектов Лаборатории реактивного движения JPL в июньском номере Astronautics & Aeronautics, а, чтобы все поняли, что проект санкционирован «наверху», NASA оповестило об этой публикации специальным пресс-релизом от 2 июня 1969 г.

Предполагалось, что первый аппарат GT1 стартует в августе 1977 г., минует Юпитер в январе 1979 г. и Сатурн в августе 1980 г., а затем направится к Плутону, которого достигнет в январе 1986 г. При этом «гравитационная роль» Сатурна заключалась главным образом в повороте траектории КА под 25° к плоскости эклиптики – поскольку в момент ожидаемой встречи Плутон находился примерно в 8 а.е. над нею. Дополнительным достоинством сценария, обозначаемого JSP77 – по первым буквам названий исследуемых планет и году старта, был назван безопасный пролет Сатурна выше колец.

Далее аппарат GT2 запускается в ноябре 1979 г. и следует по маршруту JUN79, то есть Юпитер (апрель 1981 г.) – Уран (май 1985 г.) – Нептун (июль 1988 г.), завершая разведку оставшихся планет-гигантов.

За счет разделения задач максимальная продолжительность полета уменьшалась с 12 до 9 лет, что несколько упрощало реализацию. Аппараты запитывались от радиоизотопного генератора. Двигательная установка предлагалась в двух вариантах – на ЖРД или на электроракетных двигателях. Стартовая масса зонда была около 540 кг, в качестве носителя Лонг вновь назвал комбинацию «Титана» с верхней ступенью «Центавр».

Рабочая группа также предложила создать для скорейшего исследования внешних планет более дешевый аппарат класса «Маринер». Созванная в июне 1969 г. конференция ученых из Комиссии по космической науке поддержала эту идею и выдала на-гора план аж из пяти пусков в порядке приоритетов: один старт в 1974 г. для сброса зонда внутрь Юпитера или для отклонения Юпитером к Солнцу и изучения околосолнечной среды, запуск в 1976 г. с целью создания спутника Юпитера, две миссии «Большого тура», описанные выше, и дополнительная экспедиция к Урану и Нептуну со сбросом зондов в начале 1980-х.

В описываемое время NASA еще не имело опыта создания межпланетных аппаратов с гарантированным сроком активного существования в несколько лет. Нужно было доказать техническую реализуемость проекта с учетом большой продолжительности полета (от 7 до 13 лет в зависимости от сценария). С этой целью в JPL в июле 1968 г. была начата перспективная работа по теме TOPS: Thermoelectric Outer Planets Spacecraft, то есть «Термоэлектрический КА для внешних планет». Она предусматривала подготовку проекта, изготовление и испытание отдельных систем и инженерного макета КА, а также создание системы сертификации для длительных миссий. Сначала проработка велась по основному сценарию «Большого тура», затем – для вариантов JSP и JUN.

В декабре 1968 г. необходимый объем средств на проект TOPS был оценен в 17,5 млн долларов; фактически до декабря 1971 г. был израсходован 21 млн – 7 млн в 1970-м, 10 млн в 1971-м и 4 млн в 1972 ф.г., причем от изготовления инженерного макета по ходу реализации отказались. Предварительный проект TOPS был закончен к маю 1970 г., общее описание аппарата и его подсистем появилось в сентябрьском номере Astronautics & Aeronautics, а проект в целом представлен на брифинге для представителей промышленности в сентябре 1971 г.



Проектанты предложили аппарат, питаемый от четырех радиоизотопных генераторов типа MHW-RTG на плутонии-238 суммарной мощностью 550 Вт в начале и 439 Вт после девяти лет использования. Источники питания размещались на откидной 1,5-метровой штанге, служебная аппаратура экранировалась от их воздействия. Предусматривалась и защита от мощных радиационных полей, ожидавшихся в окрестностях Юпитера. Камеры и другие научные инструменты размещались на поворотной (сканирующей) платформе. Штанга магнитометра и детектора плазмы имела длину 9,1 м. Всего под полезную нагрузку резервировалось 107 кг массы и 115 Вт мощности.

TOPS должен был иметь трехосную систему стабилизации, измерительными устройствами которой были солнечный датчик и датчик Канопуса, используемые на АМС серии «Маринер», а исполнительными – маховики, работающие от электросети КА и требующие лишь минимального расхода гидразина в сеансах разгрузки за счет включения в импульсном режиме двигателей ориентации тягой по 0,23 кгс[8]. Коррекции траектории возлагались на однокомпонентный ЖРД тягой 25 фунтов (11,3 кгс, 110 Н) с запасом топлива, соответствующим суммарному приращению скорости 220 м/с.

Связной радиокомплекс включал командный приемник S-диапазона, передатчики диапазонов S и X с усилителями двух разных типов и четыре антенны: остронаправленную зонтичную диаметром 4,26 м, разворачиваемую после запуска КА и сходную по конструкции с антенной лунного научного комплекса ALSEP, малонаправленную и две ненаправленные. Он обеспечивал передачу от Нептуна, с расстояния 30 а.е., на скорости 2048 бит/с, что позволяло за 11 суток принять на Земле до 400 снимков размером по 5 Мбит каждый. Для промежуточного хранения данных предусматривалось два записывающих устройства на магнитной ленте емкостью по 1 Гбит и буферная память на 64 Мбит. При пролете Юпитера всю информацию можно было передавать в реальном масштабе времени со скоростью 131 072 бит/с.

Как это делается: биты и байты

Бит – это универсальная единица информации с двумя значениями – 1 («да») и 0 («нет»). Один бит в секунду можно передавать даже фототелеграфом: если в данную секунду фонарь дает вспышку, то это единица, а если нет, то ноль. Высокоскоростные оптические линии передачи информации начинают применяться на околоземных КА, но дальний космос пока остается сферой применения радиоканалов. Последовательность передаваемых битов перед отправкой кодируется так, чтобы можно было свести к минимуму ошибки на приемной стороне. До кодирования может также проводиться сжатие информации математическими методами. Лишь на Земле после приема и обработки сигнала данные (например, изображение) могут быть преобразованы в привычную нам байтовую структуру, по 8 бит в байте, и сохранены в том или ином компьютерном формате.

Учитывая продолжительность полета и большое время радиообмена (порядка восьми часов у Нептуна!), аппарат должен был обладать высокой автономностью. Отсюда необходимость установки бортового компьютера. Но что если откажет сам компьютер?

Для решения этой проблемы в JPL уже несколько лет велась разработка управляющей машины STAR[9] с возможностями самотестирования и самовосстановления. В 1965 г. команда д-ра Альгирдаса Авижениса[10] создала первую работающую модель компьютера типа STAR, а к 1969 г. – собственно компьютер из десяти модулей, способный в течение 0,01 секунды выявить неполадку и выполнить необходимую переконфигурацию. За состоянием модулей по выдаваемым ими диагностическим сообщениям следил специальный троированный процессор TARP. В виде рабочего макета этот комплекс занимал три стойки в человеческий рост, так что миниатюризация его представляла серьезную проблему.



В итоге для TOPS был создан управляющий компьютер CCS – сильно упрощенная версия STAR с сокращенным набором инструкций и лишь с четырьмя процессорами: управляющим, ввода-вывода, логики и прерываний. Память состояла из 12 288 32-битных слов, производительность достигала 28 000 операций в секунду. Компьютер вместе с блоками памяти весил 21 кг.

Носитель для TOPS по заданию представлял собой «Титан-Центавр» с дополнительной твердотопливной верхней ступенью типа Burner II. Без нее необходимая скорость отлета к Юпитеру не набиралась вообще, но и с нею для спроектированного аппарата массой 821 кг грузоподъемности не хватало, особенно в пусках 1979 г. Разработчикам предстояло искать какой-то компромисс.

Компания Martin Marietta Corp. тем временем прорабатывала зонд для спуска в Юпитер и проведения уникальных исследований в атмосфере планеты-гиганта. При использовании аппарата-носителя TOPS зонд с приборами массой 8,6 кг предстояло отделять на расстоянии 26 млн км от Юпитера. Он входил в атмосферу со скоростью 50 км/с, тормозился и осуществлял спуск на протяжении 2,5 часов до глубины 400 км, где давление в 300 раз превышает земное[11].

 

Увы, столь красивый результат получался только при целевом запуске. Если же TOPS шел по траектории «Большого тура», то после сброса с него на подлете зонд мог погрузиться лишь до отметки 10 атм. Чтобы достичь больших глубин, требовалось значительное усложнение конструкции, но так называемый двухступенчатый зонд получался слишком тяжелым и плохо вписывался в схему гравитационного маневра к Сатурну. В общем, атмосферные зонды лучше было планировать вне программы «Большого тура».

Проект «Пионер-F/G»

С самого начала проектных работ по теме «Большой тур» было очевидно, что неразумно отправлять тяжелый дорогостоящий аппарат в многолетнее путешествие со сложным заданием, не имея никакого представления об условиях пути. Нужен был аппарат-разведчик, который пересечет пояс астероидов и исследует обстановку вплоть до орбиты Юпитера. На нем можно было бы также отработать некоторые новые системы и получить опыт связи и управления на больших расстояниях.

Так это обычно описывают сегодня с позиций послезнания, но начиналось все иначе.

Началось все, как это ни парадоксально, с проекта солнечного зонда, подготовленного в июле 1960 г. в Исследовательском центре имени Эймса. В Национальном консультативном комитете по аэронавтике NACA, преобразованном в 1958 г. в NASA, этот центр, расположенный рядом с авиастанцией ВМС США Моффетт-Филд в Калифорнии, между Сан-Франциско и Сан-Хосе, специализировался на авиационных исследованиях, а теперь хотел «застолбить» за собой и долю в быстро развивающейся космической программе.

Группа сотрудников во главе с Чарльзом Холлом предложила совершить разведку ближних окрестностей Солнца – проникнуть на расстояние 0,3 а.е. (45 млн км) от светила и добыть уникальные научные результаты о состоянии межпланетной и околосолнечной среды. Мощность солнечного излучения в этой области была вдесятеро больше, чем у Земли, и достигала 15 кВт/м2, однако инженеры показали, что аппарат конической формы, постоянно ориентированный острым концом на Солнце, способен выдержать нагрев.

Директор Центра Эймса Смит ДеФранс поддержал проект и в сентябре 1960 г. преобразовал неформальный коллектив разработчиков в подразделение с официальным статусом. Однако заручиться поддержкой головного офиса NASA в Вашингтоне оказалось непросто. Лишь в начале 1962 г. Холл встретился с заместителем директора Управления космической науки Эдгаром Кортрайтом, который – вполне ожидаемо – сказал, что молодая команда без реального опыта разработки космических систем взялась за слишком сложную задачу. Он предложил сначала подумать о создании простого аппарата для изучения межпланетной среды без столь опасного приближения к Солнцу.

Технико-экономическое обоснование проекта подготовила за два с половиной месяца – тогда все делалось быстро – компания Space Technology Laboratories (STL) из Редондо-Бич, пригорода Лос-Анджелеса. Результаты были представлены заместителю администратора NASA Роберту Симансу в июне 1962 г., а 9 ноября он подписал документ об утверждении проекта. Кооперация в сущности уже сложилась, но по требованию головного офиса NASA был проведен двухэтапный конкурс, который выиграла STL. В августе 1963 г. ей был выдан предварительный, а в июле 1964 г. – окончательный контракт. В июле 1965 г. STL была преобразована в TRW Systems Group, а 16 декабря 1965 г. стартовал первый из пяти изготавливаемых ею межпланетных зондов.

Проектное название этого КА было «Пионер-A» (Pioneer A). После успешного запуска ему дали имя «Пионер-6», хотя с предыдущими лунными «Пионерами» у него не было ничего общего, а с «Пионером-5», исследовавшим в марте – июне 1960 г. пространство между орбитами Земли и Венеры, новый зонд состоял разве что в идейном родстве. Следующие аппараты с буквенными индексами от B до E запускались ежегодно с 1966 по 1969 г. Три стартовали удачно и получили названия от «Пионера-7» до «Пионера-9»; последний аппарат серии, собранный ради экономии средств из запчастей, погиб из-за отказа навигационной системы ракеты-носителя.

Согласно проекту, гарантированное время работы каждого аппарата составляло шесть месяцев. В самых смелых мечтах команда Чарльза Холла не могла себе представить, сколько они проработают на самом деле! На протяжении многих лет четыре цилиндрических, стабилизированных вращением «Пионера» передавали информацию о состоянии межпланетной среды на расстояниях от 0,75 до 1,12 а.е. от Солнца. Бортовые приборы сообщали о силе межпланетного магнитного поля, об ионах и электронах солнечного ветра, о плотности электронной плазмы, о солнечных и галактических космических лучах. «Пионер-9» вышел из строя в 1983 г. Эпизодические контакты с тремя остальными аппаратами осуществлялись до 31 марта 1997 г., а последний сеанс связи с «Пионером-6» состоялся 8 декабря 2000 г., через 35 лет после запуска!

Отличная работа первых аппаратов серии свидетельствовала о хорошей продуманности проекта и качественной реализации. Появилось желание расширить зону исследования межпланетных «Пионеров», причем как во внутреннем направлении, то есть к орбите Меркурия и даже ближе к Солнцу, так и в наружном – до орбиты Юпитера.

Первую заявку на развитие проекта NASA сделало в проекте бюджета на 1969 ф.г.[12], представленном в Конгресс 29 января 1968 г. Два новых аппарата, уже тогда получившие обозначения «Пионер-F» и «Пионер-G», должны были совершить полет «за орбиту Марса, через пояс астероидов и к орбите Юпитера». В качестве научных задач были названы определение «градиента влияния Солнца на межпланетное пространство и проникновения галактического космического излучения в Солнечную систему». Запустить их планировалось в 1973–1974 гг.

Подчеркнем, что новые «Пионеры» сначала не предназначались для изучения Юпитера, а тем более Сатурна. NASA надеялось лишь выполнить облет планеты с гравитационным маневром и достичь за счет этого еще бóльших расстояний от Солнца. Совершая полет на спаде солнечной активности и в период ее минимума, эти зонды могли бы, как верили тогда ученые, «изучить положение границы между солнечной короной и межзвездной средой». Буквально этими словами Джон Ногл обосновывал сроки стартов на слушаниях в Конгрессе 19 февраля 1968 г. Говоря современным языком, речь шла о гелиопаузе – границе областей господства солнечного ветра и межзвездного вещества. Тогда ученые всерьез полагали, что она может находиться сразу за орбитой Юпитера или даже перед нею, и если это так, то «Пионеры» могли бы первыми проникнуть в межзвездную среду.

Конгресс в законе о разрешении финансирования одобрил проект «Пионер-F/G», и 20 августа 1968 г. Исследовательскому центру имени Эймса было предписано начать работу. Подрядчиком вновь стала фирма TRW Systems – уже в октябре она представила в Центр Эймса аванпроект нового зонда-разведчика по теме «Пионер-Юпитер». Внешне он был не очень похож на те, что стартовали в действительности, – достаточно сказать, что в основном варианте питание предполагалось от шести больших панелей солнечных батарей. А вот носители, годы старта и траектории выбрали уже тогда.

В январе 1969 г. в составе проекта бюджета на 1970 ф.г. впервые были запрошены средства на создание двух КА в рамках общей программы «Пионер». Теперь уже достижение Юпитера значилось официальной целью нового проекта, как и оценка потенциальных угроз для «Большого тура». Предстояло измерить свойства заряженных частиц, магнитных полей и радиоизлучения вблизи Юпитера. На основании этих данных можно было изучить состав и динамику атмосферы планеты и ее взаимодействие с межпланетной средой, а также проанализировать тепловой баланс Юпитера и разобраться с источником его внутренней энергии. Однако еще только рассматривалась возможность поставить на «Пионеры» какую-нибудь телевизионную систему для съемки планеты[13].

Теперь два старта планировались в 1972 и 1973 гг. Аппараты проектировали под носитель «Атлас-Центавр» с дополнительной третьей ступенью, однако NASA намеревалось отправить первый из них на ракете «Титан-Центавр», чтобы испытать ее перед двумя запусками «Викингов» к Марсу весной 1973 г.

Тогда же и в рамках той же программы у Конгресса запросили деньги на совместный межпланетный проект Западной Германии и США под названием «Гелиос» (Helios) с той самой целью, с которой все началось: измерить свойства космической среды вплоть до дистанции 0,3 а.е. от Солнца. Роль головного разработчика взяла на себя ФРГ, которая в основном и финансировала два новых солнечных зонда, а США поставляли часть научной аппаратуры и обеспечивали запуски в 1974 и 1975 гг.

Средств на новые «Пионеры» и на приборы для «Гелиосов» требовалось немного, так что Конгресс не стал упрямиться и деньги выделил. Проект отправки двух «Пионеров» к Юпитеру был утвержден руководством NASA 8 февраля 1969 г. Руководили работами те же люди, что и отвечали за создание зондов предыдущей серии. Менеджером проекта остался Чарльз Холл, глава специального проектного отдела Центра Эймса. Разработку служебного борта вел Ральф Холтцклау, а комплекса научной аппаратуры – Джозеф Лепетич. Роль научного руководителя проекта взял на себя д-р Джон Вулф, он же – руководитель эксперимента по изучению солнечного ветра.

Контракт на разработку, изготовление, испытания и поставку двух одинаковых КА общей стоимостью 38 млн долларов был выдан 11 февраля 1970 г. компании TRW Systems. На фирме проект вел Бернард О'Брайен.

В январе 1970 г. старты «Викингов» были отложены с весны 1973-го на лето 1975 г. Как следствие, отпала необходимость в испытательном пуске ракеты «Титан-Центавр» в 1972 г.[14], и единственным носителем «Пионеров» остался «Атлас-Центавр» компании General Dynamics/Convair с дополнительным разгонным блоком TE-M-364–4. Фактически это была верхняя ступень от ракеты «Дельта» с твердотопливным двигателем тягой 6800 кгс от фирмы Thiokol Chemical Company. Эта комбинация обеспечивала для аппарата стартовой массой 258 кг при прямом выведении (без промежуточной опорной орбиты) отлетную скорость 14,5 км/с и достижение Юпитера через 600–750 суток.

Чтобы зонд влез под головной обтекатель диаметром 3,05 м, параболическую остронаправленную антенну высокого усиления HGA[15] сделали диаметром 2,74 м. В частотном диапазоне S она имела коэффициент усиления 33 дБ[16] при ширине луча 3,3°. Над ее чашей на трехногой опоре на высоту 1,2 м была вынесена рупорная антенна среднего усиления MGA, дающая 12 дБ усиления в луче шириной 32°. Высота аппарата от кольца адаптера для установки на третьей ступени ракеты-носителя (РН) и до антенны MGA составила 2,9 м.

Корпус станции был выполнен в виде шестиугольной призмы высотой 0,36 м и диаметром описанной окружности 1,42 м – стороны соответственно были по 0,71 м, то есть ровно по одному аршину в ширину. С одного бока к корпусу крепился контейнер с научной аппаратурой, тоже шестиугольный, толщиной 0,49 м, с другого – блок оптических датчиков космической пыли. Между корпусом и антенной HGA располагалась третья антенна – всенаправленная низкого усиления LGA (5 дБ).

В проекте «Пионер-F/G» впервые в практике автоматических межпланетных КА был применен радиоизотопный источник питания. Как известно, мощность, приходящая от Солнца на единицу площади, ослабевает как квадрат расстояния, и уже у Юпитера она в 26 раз меньше, чем у Земли. Сейчас существуют высокоэффективные фотоэлементы, способные давать достаточное питание на таком расстоянии от светила. В начале 1970-х это еще было фантастикой.



Поэтому аппарат был запитан от радиоизотопных генераторов SNAP-19 на плутонии-238, изготовленных компанией Teledyne Isotopes из топливных дисков Лос-Аламосской лаборатории и оснащенных термоэлектрическими преобразователями. Четыре таких генератора вместе выдавали 155 Вт электрической мощности при запуске и 140 Вт к моменту достижения Юпитера. Для питания систем КА было нужно 100 Вт, для научной аппаратуры – еще 26 Вт. Избытком мощности заряжали серебряно-кадмиевую аккумуляторную батарею либо излучали его через шунт-радиатор. Бортовая сеть работала при напряжении 28 В.

Чтобы генераторы создавали как можно меньше помех научной аппаратуре, их установили попарно на концах двух ферменных штанг, отводимых в сторону от корпуса на 2,7 м. На третьей штанге длиной 5,2 м разместили датчик магнитометра, так что он отстоял на 6,6 м от оси. Таким образом, аппарат был не вполне симметричен, и ось вращения его отстояла от оси антенны HGA примерно на 20 см.

3Вероятно, первым использовал название Grand Tour в космонавтике Стэнли Росс из Lockheed в отчете для Центра Маршалла (июнь 1962 г.), описывающем последовательный пилотируемый облет Марса и Венеры.
4Эта величина называется синодическим периодом обращения Земли относительно Юпитера.
5Удельным импульсом называется сила тяги ракетного двигателя, отнесенная к расходу компонентов топлива. Если тяга измеряется в килограммах силы, а расход – в килограммах массы в секунду, результату по традиции приписывается размерность «секунда». Лучшие химические двигатели на кислороде и водороде имеют удельный импульс около 455 сек.
6И не получило.
7Оценивались также варианты запуска на более легком носителе «Атлас-Центавр», но с дополнительным разгоном с помощью электроракетной двигательной установки (ДУ) на борту КА.
8Три маховика управляют угловыми скоростями КА относительно трех осей за счет принудительного изменения собственной скорости вращения. Внешние возмущения, как правило, «устроены» так, что для сохранения стабилизации КА нужно постоянно увеличивать скорость вращения маховиков. Поэтому время от времени их приходится разгружать – снижать скорость, компенсируя возникающий угловой момент с помощью ЖРД. Сейчас такая схема является общепринятой, но в описываемых далее проектах она не нашла себе места.
9Self Test and Repair.
10У Джона Дэвиса в «Краткой истории „Вояджера“» (Spaceflight, февраль 1981 г.) он проходил в ошибочном написании Alverez Avizienes. Альгирдас Авиженис родился в 1932 г. в Каунасе (Литва) в семье майора Генерального штаба Антанаса Авижениса, который в 1944 г. ушел на Запад с отступающей германской армией. С 1950 г. Альгирдас жил в США, с 1962 г. работал в Калифорнийском университете в Лос-Анжелесе. В 1980 г. за вклад в создание «Вояджера» был удостоен медали NASA «За исключительные заслуги».
11В случае установки на аппарат класса «Пионер» атмосферный зонд мог доставить аппаратуру массой 12,3 кг на глубину, соответствующую давлению 72 атм.
12Он начинался 1 июля 1968 г.
13В феврале 1970 г. стало известно, что на эту роль выбран фотополяриметр, разрабатываемый Аризонским университетом совместно с Исследовательским центром в Санта-Барбаре.
14Первый «Титан-Центавр» улетел в феврале 1974 г. с динамическим макетом марсианского КА «Викинг» и потерпел аварию. Остальные шесть ракет этого типа стартовали успешно.
15High Gain Antenna. Далее соответственно Medium Gain Antenna и Low Gain Antenna.
16Грубо говоря, в 2000 раз. Позже мы обсудим это подробнее, а пока лишь заметим, что усиление обеспечивалось в узком луче за счет практически полного отсутствия сигнала за его пределами.