Большая книга о еде, несущей здоровье. Теория системного питания. Самый подробный путеводитель по грамотному выбору, приготовлению и употреблению пищи

Text
Read preview
Mark as finished
How to read the book after purchase
Don't have time to read books?
Listen to sample
Большая книга о еде, несущей здоровье. Теория системного питания. Самый подробный путеводитель по грамотному выбору, приготовлению и употреблению пищи
Большая книга о еде, несущей здоровье. Теория системного питания. Самый подробный путеводитель по грамотному выбору, приготовлению и употреблению пищи
− 20%
Get 20% off on e-books and audio books
Buy the set for $ 11,36 $ 9,09
Большая книга о еде, несущей здоровье. Теория системного питания. Самый подробный путеводитель по грамотному выбору, приготовлению и употреблению пищи
Audio
Большая книга о еде, несущей здоровье. Теория системного питания. Самый подробный путеводитель по грамотному выбору, приготовлению и употреблению пищи
Audiobook
Is reading Александр Воробьев
$ 6,25
Details
Font:Smaller АаLarger Aa

Преобразования пищевых веществ

В желудочно-кишечном тракте происходит переваривание пищи, перемещение ее по пищеварительному каналу, всасывание в кровь воды, продуктов гидролиза белков, жиров и углеводов, поступающих с пищей минеральных, лекарственных и других биологически активных веществ, формирование, накопление и выведение из кишечника каловых масс. Все эти процессы объединены общим термином – пищеварение, которое представляет очень сложный процесс физического, химического и ферментативного преобразования пищи.

Физические преобразования пищи заключаются в ее измельчении, перемешивании, набухании, образовании суспензий и эмульсий и в частичном растворении. Такая обработка существенно увеличивает поверхность пищевой массы и повышает ее доступность для действия железистых секретов и пищеварительных ферментов. Перемешивание пищи и ее продвижение по желудочно-кишечному тракту обеспечивается различными видами сокращений мышц пищевода, желудка и кишечника. В пищеводе – тоническими волнами и перистальтическими сокращениями; в желудке – тоническими, перистальтическими и систолическими сокращениями; в тонкой кишке – ритмической сегментацией, маятникообразными, перистальтическими и антиперистальтическими сокращениями; в толстой кишке – маятникообразными, перистальтическими и антиперистальтическими сокращениями. Перистальтика наиболее выражена в двенадцатиперстной, тощей и в конечном участке подвздошной кишки.

Химические и ферментативные преобразования связаны с рядом последовательных стадий расщепления белков, жиров и углеводов до более мелких и простых соединений под действием секретов (слюны, желудочного, панкреатического и кишечных соков и желчи), создающих оптимальную для гидролитических процессов химическую среду (соляная кислота, бикарбонаты), а также под действием выделяемых с секретами пищеварительных ферментов. К этому следует добавить, что желчь, эмульгируя жиры, облегчает их расщепление ферментом липазой.

В результате указанных преобразований из пищеварительного канала через слизистую оболочку всасываются в кровь преимущественно простые и хорошо растворимые химические соединения. В неизменном виде поступают вода, минеральные соли, витамины и некоторые другие органические соединения.

Ферменты (от лат. fermentum – брожение; синоним – энзимы) – это биокатализаторы (соединения, способные многократно ускорять химические реакции). В их состав входят простые или сложные специфические белки, макро-и микроэлементы, витамины и другие вещества. Ферменты отличаются большим разнообразием (науке известно более 2000 ферментов) и присутствуют они в каждой клетке.

Ферменты активно участвуют в переваривании, всасывании и усвоении пищевых веществ, в синтезе и распаде белков, нуклеиновых кислот, жиров, углеводов и других соединений в тканях и клетках любого организма. Кроме того, они обеспечивают дыхание, мышечное сокращение, нервно-психическую деятельность, размножение и другие функции. Мы же рассматриваем лишь те ферменты, которые участвуют только в пищеварении (в реакции разложения сложных пищевых веществ до более простых соединений).

Пищеварительные ферменты делятся на три основные группы:

1) протеазы – ферменты, расщепляющие белки;

2) липазы – ферменты, расщепляющие жиры;

3) карбогидразы (или амилазы) – ферменты, расщепляющие углеводы.

Названия большинства ферментов складываются из названия тех веществ, которые они разлагают с заменой в названии буквы «о» на «а» и добавлением суффикса – аза. Например, молочный сахар называется лактоза, а фермент, который его разлагает, – лактаза, солодовый сахар – мальтоза, а фермент, его разлагающий, – мальтаза и так далее. В тексте названия ферментов выделены курсивом.

Образуются ферменты в специальных секреторных клетках пищеварительных желез, а затем они поступают в пищеварительный тракт вместе со слюной, желудочным, поджелудочным (панкреатическим) и кишечными соками и желчью. Одни ферменты синтезируются в активном состоянии (амилазы, липазы, нуклеазы), другие – в виде неактивных проферментов (предшественников ферментов – «зимогенов») – (пепсиноген, трипсиноген и др.) или в неактивном состоянии.

Для начала функционирования ферменты активируются специальными процессами с участием коферментов (их роль выполняют витамины группы В, витамины Е, К, С, N), соляной кислоты желудочного сока, ферментов (энтерокиназы, трипсина), гормонов и ряда других веществ. Например, профермент пепсиноген переводится в активное состояние соляной кислотой, а трипсиноген – ферментом энтерокиназой.

Коферменты (коэнзимы) – это низкомолекулярные органические соединения, необходимые в качестве специфических компонентов (кофакторов) для осуществления каталитического действия ряда ферментов.

Действуют ферменты в строго определенных условиях среды (при определенной температуре и кислотности – рН, а именно в кислой, щелочной или нейтральной среде). При этом ферментативная обработка пищи в желудочно-кишечном тракте осуществляется наиболее эффективно только при последовательном действии ферментов пищеварительных секретов, мембранных и внутриклеточных ферментов (пищеварительно-транспортный конвейер).

Для переваривания пищи имеют значение и собственные внутриклеточные ферменты, содержащихся в сырых растительных и животных продуктах. При их употреблении под действием соляной кислоты или желчных кислот активируются их внутриклеточные ферменты и включается механизм «самопереваривания» (индуцированный аутолиз), при котором более 50 % пищи расщепляется этими ферментами. Таким образом, в результате приема сырой пищи (и женского молока грудными детьми) уменьшается секреция пищеварительных соков, снижается нагрузка на секреторный аппарат и уменьшаются энергозатраты на пищеварение. После тепловой кулинарной обработки (при температуре выше 54 °C) процесс самопереваривания становится невозможным, что и происходит, например, при домашнем консервировании, когда перед закладкой в банки свежие овощи и фрукты выдерживают в горячей воде для нейтрализации их ферментов и обеспечения длительного хранения заготовок.

Поступая во все отделы пищеварительного канала, различные ферменты действуют последовательно, расщепляя пищевые вещества до все более простых химических соединений (в соответствии с определенными стадиями пищеварения). То есть многие ферменты способны выполнять свою работу только после предшествующего действия на пищевые вещества других ферментов. Например, если амилаза слюны (устаревшее название птиалин) не расщепит крахмал до декстринов, а последние не преобразуются амилазой поджелудочной железы до мальтозы и изомальтозы, будет невозможен заключительный этап гидролиза углеводов – расщепление их до моносахаридов мембранными ферментами мальтазой и изомальтазой. Из этого вытекает необходимость тщательного пережевывания пищи и соблюдения правильных пищевых сочетаний, чтобы крахмал должным образом расщеплялся амилазой слюны в полости рта и желудке и чтобы не повышалась нагрузка на поджелудочную железу и секреторный аппарат тонкой кишки, которые участвуют в расщеплении углеводов.

Следует также иметь в виду, что каждый пищеварительный фермент влияет только на один вид пищевых веществ; например, ферменты, расщепляющие углеводы, не могут действовать на белки и жиры. Кроме того, для ферментов характерна и внутривидовая специфичность: ферменты, расщепляющие углевод мальтозу, не действуют на углевод лактозу.

Ферментный состав выделяемых секретов (слюнного, желудочного, панкреатического, желчного и кишечных) варьируется в зависимости от состава потребляемой пищи. При употреблении пищи с высоким содержанием углеводов выделяется больше амилаз, при приеме белковой пищи – больше протеаз, при приеме жирной – больше липаз. Кроме того, ферментативная система приспосабливается к расщеплению и конкретных видов продуктов. При употреблении привычных продуктов выделяемые ферменты обеспечивают их расщепление, а при приеме непривычных – специфически ориентированные ферменты не обеспечивают их гидролиз и в результате могут возникать расстройства пищеварения (такие ситуации возможны в начале весенне-летнего сезона, в командировке или отпуске в дальних краях).

В то же время при постепенном введении в рацион новых продуктов нарастает и синтез «нужных» ферментов, способных их расщеплять. Например, пепсины желудочных желез грудного ребенка приспособлены к гидролизу белков материнского молока, а при введении в рацион яичных, мясных и растительных белков состав пепсинов постепенно адаптируется и к ним. Благодаря этим механизмам обеспечивается приспособление организма к новому рациону и непривычным продуктам в течение двух недель.

Переваривание пищи осуществляется в нейтральной, кислой и щелочной средах (обозначаемых рН), постоянных в различных отделах желудочно-кишечного тракта (рН = 7 указывает на нейтральную реакцию среды; рН менее 7 – на ее кислотные свойства; рН более 7 – на ее щелочные свойства). Причем кислотно-щелочной состав содержимого различных отделов желудочно-кишечного тракта, даже рядом расположенных, резко различается. Так, в полости рта среда близка к нейтральной (во время еды – слабощелочная), в пищеводе – нейтральная (рН около 7), в желудке – от почти нейтральной до сильнокислой (рН до 0,8–1,5), в двенадцатиперстной – щелочная (рН = 7,2–8), а с пищей – переменная (рН = 4–8), в других отделах тонкой кишки (тощей и подвздошной) – близка к нейтральной (рН = 6,5–7,5), в толстой кишке – слабокислая. Это удивительное постоянство сред в каждом отделе свидетельствует о нормальном состоянии желудочно-кишечного тракта, и поддерживается оно природными механизмами.

Постоянство сред обеспечивается постепенным, порционным поступлением пищи из одного отдела желудочно-кишечного тракта в другой и анатомо-физиологическими особенностями органов пищеварения. Регулирование продвижения пищи осуществляется координированным моторным «поведением» желудочно-кишечного тракта с участием «клапанных аппаратов» (названных так Я. Витебским), расположенных на границах смежных отделов желудочно-кишечного тракта.

 

Эти клапаны-сфинктеры в виде кольцевых скоплений гладкомышечных волокон расположены в верхней и нижней частях пищевода, на выходе из желудка в двенадцатиперстную кишку (пилорический сфинктер), на выходе из тонкой в толстую кишку (илеоцекальный сфинктер) и в нижней части прямой кишки (наружный и внутренний сфинктеры заднего прохода).

Наряду с вышеперечисленными в желудочно-кишечном тракте имеются и другие сфинктеры: 9 – в ободочной кишке, 1 – (третий, верхний) в прямой кишке, 3 – в желчных протоках, 1 – в поджелудочном протоке и 1 – в печеночно-поджелудочной ампуле.

Клапаны-сфинктеры пищеварительного канала надежно защищают нижележащие отделы от форсированного поступления сверху «агрессивного» содержимого, регулируют порционное продвижение пищевых масс и предотвращают обратное их перемещение (в том числе благодаря своему строению). Функционируют сфинктеры следующим образом. При поступлении порции кислого желудочного содержимого в двенадцатиперстную кишку в ней повышается кислотность и закрывается пилорический сфинктер. После нейтрализации кислоты и перемещения содержимого в тощую кишку сфинктер раскрывается и пропускает следующую порцию пищи.

Так же порционно перемещается тонкокишечное содержимое и в толстую кишку (через илеоцекальный сфинктер). Однако открывается он под влиянием перистальтических и тонических волн в конечной части подвздошной кишки и повышения давления в ней, а закрывается – при снижении давления в ней или повышения давления со стороны толстой кишки. По наблюдениям некоторых исследователей, данный сфинктер работает синхронно с пилорическим.

Продвижение пищи по желудочно-кишечному тракту напоминает своеобразный конвейер, где под действием пищеварительных секретов (слюны, желудочного, панкреатического и кишечного соков и желчи), а также содержащихся в них ферментов, пища расщепляется на мельчайшие частицы, которые через слизистые оболочки полости рта, желудка, тонкой и толстой кишки проникают в кровеносные и лимфатические сосуды и поступают во внутреннюю среду организма. Всасываются в кровь преимущественно простые и хорошо растворимые химические соединения. В неизменном виде всасываются в кровь вода, минеральные соли, витамины и некоторые другие органические соединения. По воротной вене расщепленные элементы белков, жиров, углеводов и другие биоактивные вещества попадают в печень, отдельные преобразуются и депонируются в ней, а остальные разносятся по всем клеткам и тканям и используются в качестве строительного и энергетического материала. В клетках под действием ферментов и кислорода они снова расщепляются с выделением энергии, необходимой для жизнедеятельности организма.

Анализируя физиологию пищеварения, следует учитывать, что во всех продуктах питания содержатся разнообразные пищевые вещества, находящиеся в связанном состоянии (так, в ржаном подовом хлебе из обдирной муки содержится 6,1 % белков, 1,2 % жиров, 1,4 % моно- и дисахаридов, 39,5 % крахмалов и 0,8 % органических кислот). А под действием пищеварительных секретов и ферментов молекулярные связи пищевого продукта разрушаются и высвобождают имеющиеся в нем пищевые вещества, которые далее подвергаются специфическому гидролизу.

Белки начинают расщепляться в кислой среде желудочного сока его ферментами (пепсином, гастриксином, желатиназой) до полипептидов, пептидов и небольшого количества аминокислот. В желудке переваривается около 10 % белков (или выражаясь научными терминами, в желудке гидролизуется около 10 % всех пептидных связей). Нерасщепленные белки и полипептиды продолжают перевариваться в слабощелочной и нейтральной средах тонкой кишки панкреатическими, кишечными и желчными протеазами (трипсином, химотрипсином, эластазой, карбоксипептидазой, аминопептидазой и другими) через ряд промежуточных стадий до пептидов и аминокислот, которые всасываются в тощей и подвздошной кишке. Другие белковые (азотистые) соединения – нуклеиновые кислоты (ДНК, РНК) – расщепляются в желудке и кишечнике нуклеазами до нуклеотидов, которые также всасываются в кишечнике.

Нейтральные жиры (триглицериды) частично расщепляются в желудке ее липазой, поступающей сюда из крови, а в основном – в двенадцатиперстной и тощей кишках панкреатическими и кишечными липазами (с участием поверхностно-активных желчных кислот, которые эмульгируют жиры, увеличивая их поверхность и делая их доступными для ферментов). В результате этих реакций жиры расщепляются на жирные кислоты, моноглицериды и свободный глицерин, которые всасываются в двенадцатиперстной, тощей (преимущественно здесь) и в подвздошной кишке. Желчные кислоты всасываются в подвздошной кишке.

Фосфолипиды и холестерин перевариваются и всасываются в тонкой кишке. Фосфолипиды расщепляются панкреатической фосфолипазой А на изолецитин и жирную кислоту, а затем щелочной (или кислой) фосфотазой, гидролизующей холинфосфат и этаноламинфосфат. Сложные эфиры холестерина расщепляются панкреатической и кишечной холестеринэстеразой на свободный холестерин и жирную кислоту.

Углеводы начинают расщепляться во рту ферментами слюны птиалином и мальтазой, продолжают перевариваться в желудке за счет слюнного пищеварения и заканчивают – в тонкой кишке панкреатическими, кишечными и желчными амилазами. Полисахариды (крахмал, гликоген, инулин, стахиоза) расщепляются птиалином слюны во рту и в желудке, далее – панкреатическими, кишечными и желчными амилазами до декстринов, которые расщепляются теми же ферментами до мальтозы с образованием незначительного количества глюкозы. При тщательном пережевывании пищи во рту расщепляется до 10–15 %, а в желудке – более 50 % указанных полисахаридов.

Образовавшиеся или освобожденные от молекулярных связей дисахариды преобразуются следующим образом: мальтоза расщепляется мальтазой слюны, панкреатического или кишечных соков на две молекулы глюкозы, сахароза – мальтазой слюны, соляной кислотой желудочного сока, панкреатическими или кишечными сахаразами на глюкозу и фруктозу, лактоза (молочный сахар) – кишечной лактазой на глюкозу и галактозу. С возрастом синтез лактазы снижается и возникает непереносимость молока, но не кисломолочных продуктов, в которых лактоза в основном перерабатывается лактобактериями. Малая часть глюкозы и других моносахаридов всасывается во рту, в желудке и толстой кишке, а большая часть – в тонкой кишке. Пищевые волокна расщепляются в толстой кишке ферментами, синтезируемыми его микрофлорой.

Органические кислоты гидролизуются в желудочно-кишечном тракте с образованием слабой кислоты и сильного основания (щелочи). При этом кислота разрушается с выделением углекислого газа и воды (которые выводятся из организма), а щелочь (в виде солей калия, кальция, магния или натрия) остается и смещает кислотно-щелочное равновесие крови в сторону ощелачивания.

Теперь ознакомимся с пищеварительными процессами во всех отделах желудочно-кишечного тракта.

Пищеварение в полости рта

Ротовой полостью осуществляется захват пищи, анализ ее свойств с помощью рецепторов (вкусовых, тактильных, температурных, болевых), измельчение (путем жевания), насыщение слюной, перемешивание (с помощью языка и щек) и формирование пищевого комка. Кроме того, во рту при жевании начинается расщепление углеводов, а также всасывание моносахаридов и некоторых лекарственных веществ.

Полость рта участвует не только в переработке пищи, но и в дыхании, формировании звуков речи и пении. Ее ограничивают: спереди и с боков губы и щеки, сверху – твердое и мягкое небо, снизу – дно полости рта, сзади она соединена посредством зева с полостью глотки. В полости рта расположены зубы и язык, в нее открываются протоки больших и малых слюнных желез.

Полость рта выстлана слизистой оболочкой, обладающей устойчивостью к действию различных механических, химических и термических раздражителей, высокой регенеративной способностью и относительной устойчивостью к внедрению инфекций.

Слизистая оболочка покрыта многослойным плоским эпителием, способным накапливать большое количество гликогена и обладающим высоким уровнем активности ферментных систем. В подслизистом слое слизистой оболочки залегают многочисленные слюнные железы.

Во время приема пищи информация, поступающая от рецепторов полости рта в пищевой центр головного мозга, стимулирует регуляцию моторной и секреторной деятельности всего пищеварительного аппарата и воздействует на обменные процессы. Таким образом, несмотря на кратковременное пребывание пищи во рту, этот отдел желудочно-кишечного тракта оказывает влияние на все этапы ее поглощения, переработки и всасывания. Важнейшую роль в этих процессах играет слюна.

Слюна обеспечивает следующие функции.

1. Химическую и ферментативную обработку пищи (главным образом углеводистой пищи).

2. Обеззараживание пищи, слизистой оболочки полости рта и зубов от бактерий (лизоцимом).

3. Очищение слизистой оболочки и зубов от остатков пищи.

4. Защиту слизистой оболочки (слизистым веществом муцином) от раздражающего влияния алкоголя, острой, кислой, сухой, горячей и холодной пищи, а также от острых предметов, попадающих в ротовую полость (путем обволакивания их слизью).

5. Защиту эмали зубов от вышеперечисленных раздражающих факторов. На состояние эмали зубов оказывают влияние свойства слюны и ее минеральный состав. При резком и длительном ослаблении секреции слюны и изменении ее состава повышается риск развития кариеса.

6. Обволакивание пищи слизистым веществом муцином, что облегчает формирование пищевого комка, его проглатывание и дальнейшее продвижение.

7. Увлажнение слизистой оболочки, что помогает выполнять речевую функцию и улучшает двусторонний транспорт веществ между слизистой оболочкой и слюной.

8. Растворение пищи, что позволяет оценивать ее химический состав рецепторам полости рта.

9. Выведение из крови ядов и токсинов. Благодаря экскреторной функции ротовую полость справедливо считают своеобразным индикатором состояния желудочно-кишечного тракта. Белый налет на языке, обнаруженный с утра, показывает дисфункцию желудка, серый – поджелудочной железы, желтый – печени, а обильное слюнотечение ночью у детей отражает дисбактериоз и глистную инвазию.

Слюна поступает в полость рта по протокам от трех пар больших слюнных желез (околоушной, подчелюстной, подъязычной) и многочисленных мелких (в слизистой оболочке губ, щек, твердого и мягкого нёба, языка и глотки).

Слюнные железы (с учетом выделяемых ими секретов) подразделяют на три группы:

1) белковые (серозные), выделяющие жидкий секрет;

2) слизистые (мукозные), содержащие много муцина;

3) смешанные (серозно-слизистые), выделяющие белково-слизистый секрет.

Продукция слюнных желез варьирует в количественном и качественном отношении в зависимости от природы, силы, количества и продолжительности действия пищевых или отвергаемых веществ на рецепторы полости рта. При этом меняется и доля участия отдельных слюнных желез. На сухую и раздражающую пищу выделяется много слюны, на влажную и нейтральную – значительно меньше. На пищевые вещества, необходимые организму (белки, жиры и углеводы), выделяется густая слюна, богатая муцином, ферментами и другими органическими соединениями. На несъедобные (речной песок) или раздражающие компоненты (кислые, острые) – жидкая, призванная очищать от них полость рта или снижать их раздражающее действие. То есть все, что должно поступать в желудок, вызывает «смазочную» и богатую слюну, способную химически обрабатывать пищу. Все, что должно быть выброшено изо рта, вызывает водянистую, смывающую слюну.

Формирование слюны включает два различных процесса: 1) накопление в железах органических веществ, поступающих из крови и вырабатываемых в них, и 2) доставку в них из крови воды и солей. Во время еды накопленные в железах органические вещества постепенно расходуются, а вода и соли поступают в них непрерывно в значительном количестве (в десятки раз превосходящем объем самих желез). Поэтому слюна в начале еды вытекает густой, а к завершению трапезы – более жидкой и обладающей меньшей переваривающей силой. Вполне возможно, что подобное происходит и в других пищеварительных железах. А это означает, что эффективнее переваривается лишь умеренное количество пищи, обильное же дольше задерживается в желудке и вызывает повышенную нагрузку на нижележащие отделы пищеварительного тракта.

 

В течение суток выделяется от половины до двух литров слюны. Слюноотделение у человека происходит непрерывно, поскольку слюна обеспечивает увлажнение слизистой ротовой полости во время разговора и выполняет некоторые другие вышеперечисленные функции, не связанные с пищеварением. Скорость слюноотделения может колебаться в состоянии покоя от 1 до 111 мл/час и возрастать при жевании до 200 мл/час. Могут меняться также состав слюны (в зависимости от раздражителя – пищевого, химического, нервного и др.) и ее реакция рН = 5,8–7,8 (от слабокислой – при малой секреции до слабощелочной – при большой).

На выделение слюны и ее состав влияют ассоциации, связанные с едой, состав пищи, химические и фармакологические вещества, состояние внутренней среды, гормоны (половые, надпочечников, гипофиза, поджелудочной и щитовидной желез), эмоциональное состояние и виды деятельности человека. Слюноотделение усиливается в предвкушении еды, в хорошем настроении, от раздражающей (кислой, острой, соленой), сухой и вкусной пищи, при речевой деятельности, пении и письменной работе; затормаживается оно – при сильном волнении, страхе и боли.

В слюне содержатся: вода (94,5 %), слизистое вещество муцин, бактерицидное вещество и оно же фермент лизоцим, другие ферменты (птиалин, мальтаза, а в малом количестве – протеазы, пептидазы, липаза, щелочная и кислая фосфотазы, калликреин и другие), макро- и микроэлементы (калий, кальций, магний, натрий, сера, фосфор, хлор, железо, йод, бром, литий, медь, фтор), витамины, моносахариды (галактоза, глюкоза, манноза, рибоза, фукоза и др.), бикарбонаты, фосфаты, фториды, хлориды, свободные аминокислоты, белки, антигены, антитела, антибиотики, гормоны и другие вещества.

Антигены (агглютиногены) и антитела (агглютинины), находящиеся в слюне, желудочном, панкреатическом и кишечном соках, в форменных элементах крови (эритроцитах, лимфоцитах, тромбоцитах), в белках плазмы крови (альбуминах, глобулинах, липопротеидах), в ферментах крови и в клетках различных органов, соответствуют групповой специфичности крови. Они обладают защитными свойствами против содержащихся в пище антигенов, антител, бактерий, вирусов и паразитов, с которыми возникает реакция агглютинации (склеивания) этих веществ, обеспечивающая их нейтрализацию и введение из организма.

Со слюной выводятся из организма конечные продукты обмена (мочевина, аммиак, креатинин), соли йода, ртути, свинца, мышьяка, висмута, урана и другие токсичные соединения.

Лизоцим (мурамилпептидаза) – термостабильный фермент, содержащийся не только в слюне, но и в желудочном и кишечном соках, в плазме (сыворотке) крови, в слезах и слизи носа. Продуцируется макрофагами (клетками иммунной системы) и клетками эпителия. Обладает бактерицидной активностью в отношении грамположительных бактерий (стафилококков, стрептококков) и некоторых грамотрицательных, предупреждает развитие кариеса. Лизоцим разрушает клеточную стенку бактерий, что приводит к последующему их разрушению.

Под действием птиалина полисахариды (крахмал, гликоген и др.) начинают расщепляться до декстринов. При тщательном пережевывании пищи образовавшиеся декстрины расщепляются птиалином до мальтозы и незначительного количества глюкозы, а мальтоза расщепляется мальтазой до глюкозы (мальтазой слюны расщепляется и сахароза – на глюкозу и фруктозу).

Одновременно с перевариванием полисахаридов происходит разрушение молекулярных связей и высвобождение содержащихся в пище моно- и дисахаридов. Вот почему при тщательном пережевывании хлеба или каши во рту появляется сладковатый привкус (его дают высвобожденные и расщепленные сахариды – мальтоза, сахароза, галактоза, глюкоза, фруктоза и др.). Однако ощутить такой эффект можно лишь с годовалого возраста, когда концентрация птиалина в слюне у ребенка уже обеспечивает переваривание крахмала (уровня взрослых она достигает только к трем-пяти годам). Следовательно, начинать прикармливать детей крахмалистой пищей желательно не раньше двенадцатимесячного возраста, а приучать к ней – в течение последующих нескольких лет.

После должного измельчения и смачивания слюной пищевой массы, находящейся во рту, формируется пищевой комок, который проглатывается целиком или по частям. Сформированный пищевой комок перемещается на корень языка, затем проталкивается в глотку, при глотании поступает в пищевод, а из него попадает в желудок (жидкости перемещаются по пищеводу за 2–3 секунды, густая пища – до 10–15 секунд).

Изучение физиологии человека заставляет задуматься о том, что Природа удивительно разумно предусмотрела условия его существования, обеспечив усвоение пищи уже во рту, где через слизистые оболочки начинают всасываться глюкоза и другие простые соединения. Так, у обессилевших стайеров, берущих в рот кусочек сахара, достаточно быстро восстанавливаются силы, проясняется сознание и улучшается мыслительная деятельность (поскольку сахар состоит на 99 % из сахарозы, расщепляющейся мальтазой до глюкозы и фруктозы). Возможность быстрого всасывания жизненно важных элементов во рту успешно используют и в медицине, рекомендуя сердечным больным класть под язык валидол или нитроглицерин, которые быстро усваиваются и дают нужный эффект.

You have finished the free preview. Would you like to read more?