Древние и не совсем древние технологии для извлечения атмосферного электричества и пьезоэлектричества

Text
Read preview
Mark as finished
How to read the book after purchase
Font:Smaller АаLarger Aa

Изучив все зависимости и свойства такой системы, Тесла 18 января 1902 года подал заявку на «Устройство для передачи электрической энергии», патент же был им получен только через 13 лет.

Это патент №1119732 от 1 декабря 1914 года – рис. 10

Рис. 10


Рис. 10. Патент Никола Тесла №1119732 [140]


Из патента №1119732:

«Первичную обмотку можно возбуждать любым способом от подходящего источника G, который может быть генератором переменного тока или конденсатором, причем основное требование заключается в установлении резонанса, то есть вывод D должен зарядиться до максимального напряжения цепи. Если передатчик имеет большую мощность, то настройку следует производить с особенной тщательностью, в целях экономии и безопасности. Я показал, что в резонирующей цепи наподобие EABB’D можно вызвать электричество огромной силы, измеряемой сотнями и тысячами лошадиных сил, целесообразно начинать настройку со слабых и низкочастотных вынуждающих колебаний, постепенно усиливая их и наращивая частоту, пока не удастся добиться полного контроля над аппаратом».

Становится ясно, что здесь воплощена идея Тесла, высказанная им во время выступления 24 февраля 1893 года о том, как необходимо взаимодействовать с электрическим зарядом Земли, а также способ правильной настройки, соответствующий идее. Отметим, что в патенте №787412, заявка на получение которого была подана 16 мая 1900 года, подробно описан принцип правильной настройки такой системы. Основы также описаны и в патенте №649621 от 15 мая 1900 года.

Новые способы получения дешевой энергии у многих ученых вызывают опасения из-за вмешательства в процессы атмосферы и ионосферы. Их влияние на возникновение и течение жизни на Земле изучено слабо, поэтому воздействие может пагубно отразиться на состоянии планеты.

Однако ученые считают, что технология атмосферного электричества тормозится умышленно. Более того, существует факт масштабного использования электричества из воздуха до 1917 года. Известно по старым литографиям и рисункам, о существовании электроэнергии даже в XVII веке.


Рис. 11


Рис. 11. Заряд ионосферы


Верхние слои атмосферы называют ионосферой не просто так – в ней очень много положительно заряженных частиц – ионов. Считается, что сама планета, в свою очередь, заряжена отрицательно. Отсюда и «заземление» – подключение отрицательного полюса в полярной электрической схеме к «земле».

Теперь, если представить нашу планету в виде сферического конденсатора, то получится, что он состоит из двух обкладок – положительно заряженной ионосферы (рис. 11) и отрицательно заряженной поверхности земли. Атмосфера играет роль изолятора. Через атмосферу постоянно протекают ионные и конвективные токи утечки этого «конденсатора». Но, несмотря на это, разность потенциалов между «обкладками» не уменьшается. Мы по-прежнему наблюдаем молнии, полярные сияния, да и ионов меньше не становится. Это значит, что существует некий генератор, который постоянно подзаряжает эту систему. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой, и солнечный ветер, ионизирующий верхние слои атмосферы. Если каким-либо способом подключить к этому генератору полезную нагрузку, мы получим практически вечный и бесплатный источник электроэнергии.

Разность потенциалов атмосферы и земной поверхности может достигать от сотен вольт до сотен тысяч вольт на разных высотах и в разное время года. Принципиальная схема «электростанции» в таком случае предельно проста: строим высокий столб-проводник (или поднимаем кабель аэростатом), хорошенько его заземляем и разрезаем у основания на нужной нам высоте. Верхняя часть столба будет иметь положительный заряд, нижняя отрицательный. При помощи трансформаторов снижаем напряжение до нужных нам величин, попутно увеличив силу тока. Включаем полезную нагрузку.

Но в этой простоте и кроется вся хитрость. Проблема 1: высота проводника. Считается, что напряженность электрического поля планеты наиболее сильна у поверхности, т.е. на высоте 100—150 м. Выше строить сложно, хотя всегда есть аэростаты. Проблема 2, она же главная: чтобы по нашему проводнику пошел ток, т.е. движение электронов от отрицательного полюса к положительному, этот самый положительный полюс там должен быть. А если мы просто построим заземленный металлический столб, то электрическое поле в лице атмосферы его обойдет, «приняв» за новую точку поверхности земли. Таким образом, электроны, которые должны были бы двигаться снизу, от заземленной поверхности по проводнику вверх, к положительно заряженным ионам в атмосфере, этого делать не будут потому, что не смогут покинуть верхнюю часть проводника. Они останутся «запертыми» в нем, чем и обеспечится нейтральный заряд всей системы. Грубо говоря, с металла (проводника) через воздух и в воздух ток просто так не проходит. Существуют векторы напряженности электрического поля. Векторы напряженности поля проводника направлены вверх, а векторы напряженности электрического поля атмосферы направлены вниз. Они встречаются в верхней точке проводника и складываясь, компенсируют друг друга. Общий заряд системы нейтрален, однако на кончике проводника сконцентрирована наибольшая напряженность электрического поля – рис. 12.


Ри с. 12


Рис. 12. Электрическое поле Земли (слева) и электрическое поле в верхней точке проводника (справа). Е1 – вектор напряженности электрического поля Земли, Е2 – вектор напряженности электрического поля проводника


Электроны не могут покинуть верхнюю точку проводника сами по себе, у них недостаточно энергии для того, чтобы покинуть проводник. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт, но даже ее пока взять неоткуда. А если помочь электронам покинуть проводник? Тогда все заработает – электроны будут подниматься вверх, захватываться электрическим полем и по проводнику пойдет ток. Нужно только постоянно помогать им в этом процессе. Весь фокус в устройстве, которое бы освобождало электроны из проводника в атмосферу и делало это постоянно. Получается, что нужен трансформатор – проводник электронов в атмосферу. И такое чудо есть – катушки Тесла. Если избыточные электроны направлять в атмосферу при помощи коронных разрядов, или плазменной дуги или еще чего-то такого же плазменного, электроны будут покидать поверхность проводника и переходить в атмосферу по воздуху, еще как.

Совсем упрощенно – коронным разрядом на верхушке столба мы соединим обкладки «конденсатора», плазменная дуга – тот самый проводник, которым можно соединить отрицательно заряженный металл заземленного проводника с положительно заряженной атмосферой; живой пример – молния, ударившая в громоотвод.

Кто же впервые создал сооружения с использованием атмосферного электричества? Гипотеза автора, Александра Матанцева

Это самый интересный вопрос: кто же создал сооружения разных видов: церкви, мечети, храмы, здания, галереи и другие с действующими источниками атмосферного электричества, обеспечивающие освещение или нагрев. Такие сооружения известны с VI века, но наибольшее их количество построено в XVII и XVIII веках.

Некоторые считают, что все это создано руками великого изобретателя Николы Тесла! Однако годы его жизни – от 1856 до 1943 года. Получается, что он не мог иметь никакого отношения к действующим сооружениям, использующих атмосферное электричество, и созданных в указанные века и еще раньше.

Ага! Так если это не Тесла, то кто? Теорию атмосферного электричества описывал Михаил Васильевич Ломоносов, но он жил в годы от 1711 до 1765, а также Георг Вильгельм Рихман, живший с 1711 до 1753 годы. Однако, церкви, колокольни, храмы, мечети и здания с искусственным освещением и нагревом, были созданы на несколько веков еще раньше!!! Вот так вопрос!

Автор, Александр Матанцев, подробно исследовал технологии древних цивилизаций в своих книгах [1—46]. Он пришел к следующим выводам: все мегалитические сооружения:

– пирамиды,

– резонансные курганы,

– большие менгиры, кромлехи,

– статуи с острова Пасхи

были разрушены в один период времени, от 1877 года до 1750 года. Особенно поражает факт близкого совпадения разрушения Камня Фей и египетских пирамид – 1727 – 1750 годы. Все это свидетельствует о том, что были и существуют сейчас силы, заинтересованные в разрушении наследия старых цивилизаций с целью недопущения к полезным технологиям современного человечества.

Знаменитые исследователи, географы и ученые писали о том, что видели надписи на пирамиде Хеопса в период от 484 г. до н.э. до 1637 года нашей эры. В период от 1700 до 1792 годы надписей уже не было. Причина – уничтожение этих надписей точно также, как и уничтожение артефактов технического назначения. Яркий пример: обнаружение эрозии на Сфинксе, по которой определили возраст Пирамиды Хеопса более 10 тыс. лет, что никак не вписывалось в принятую версию египтологов о 3-х тысячном возрасте пирамиды. В результате места эрозии сразу же были уничтожены, их замазали цементом.

Еще один интересный пример, обнаруженный автором, Александром Матанцевым. В книге Эфраима Скуайера 1877 года выпуска (под названием «Земля Инков» есть рисунок нескольких огромных блоков в Ольянтайтамбо, Перу. На одном из этих блоков нарисованы три вертикально установленные взаимно-перпендикулярные многоступенчатые плашки или выступы. Автор выявил, что они предназначены для левитации крупных блоков и для оздоровления людей (до большого роста) с целью приспособления к новым условиям, когда увеличилась сила тяжести и уменьшилась частота Шумана. Автору удалось найти этот блок в настоящее время. Он замазан цементом!!!

 

Итак, получается, что мегалитические сооружения, включая пирамиды, курганы, менгиры, дольмены, сейды, кромлехи, которые однозначно были созданы представителями древних цивилизаций, далее были уничтожены их последователями (жрецами и другими назначенными Посвященными) – в основном, в XVIII веке, а отдельные – в XIX веке.

В последующих главах будут рассмотрены свойства колоколен, храмов, и отдельных зданий с башнями и остриями, и особыми конденсаторами, для использования атмосферного электричества, в которых использованы аналогичные приемы древних технологий, что и в пирамидах, дольменах, курганах и др., например: четырехгранные внутренние конструкции в колокольнях, мечетях, навершиях, и башнях, а также принцип использования ультразвука и сопутствующего напряжения и электромагнитного излучения при пьезоэффекте.

Все это будет подробно рассмотрено далее, а сейчас автор, Александр Матанцев формулирует свою гипотезу, которая далее подтверждается в исследованиях и становится фактом:

– во-первых, создание сооружений, использующих атмосферное электричество, выполнено по физическим законам, аналогичным их использованию в древних мегалитических сооружениях, включая пирамиды;

– во-вторых, они многофункциональные и используют для освещения и нагрева не только атмосферное электричество, но и пьезоматериалы двух основных видов: кварца и кальцита для получения при пьезоэффекте дополнительной разности потенциалов, ультразвука и сопутствующего электромагнитного излучения;

– в-третьих, опять же по причине многофункциональности, они используют не только атмосферное электричество, или энергию от Солнца, но и упругие волны Земли, или сейсмические волны;

– в-четвертых, эти сооружения относятся к последней ветви изобретений, переданных на Землю представителями древних цивилизаций;

– в-пятых, они специально разрушаются точно также, как и пирамиды и примерно в один период времени, возможно более поздний, примерно, на 50 лет;

– Никола Тесла, величайший мировой изобретатель, раскрыл их некоторые тайны, и судя по всему, имел доступ к отдельным материалам, не случайно он сутками сидел в библиотеках с древними писаниями. По этому, последнему пункту можно привести аналогию с тем, как Ашшурбанапал, царь Ассирии, правивший приблизительно в 669 – 627 годах до н. э., в чьём владении была найденная археологами библиотека, великолепно владел техникой чтения шумерских клинописных текстов. В своём дневнике он писал: «Отрадой для меня было повторять наизусть дивные творения на шумерском, и, на трудном для запоминания, аккадском». Среди этих, клинописных текстов, встречались эпические поэмы, рассказы о деяниях царей, космологические мифы, астрономические таблицы и математические формулы, астрологические прогнозы и астрономические данные о строении Солнечной системы и много другой интересной и полезной информации. Но самая интересная информация была заключена в текстах, в которых говорилось о посещении нашей Планеты представителями другой, инопланетной цивилизации. Вот вам и практически документальное подтверждение истинных истоков создания древних технологий в том числе и для церквей, храмов, мечетей и зданий с макушками луковицами, стержнями для освещения и нагрева, а также для пирамид с их уникальными возможностями по извлечению энергии и её использованию для многих целей.

Зависимость напряженности электрического поля от высоты

Сердце атмосферной электрической машины – атмосферное электричество, образующееся в облаках, особенно его много в грозовых облаках, распределенных в нижней части атмосферы – тропосфере. Грозовое облако живет не так уж долго – от часа до нескольких часов. Но на смену одним грозам приходят другие, формирующиеся в тропосфере по соседству. Современные спутниковые измерения, а также наземные системы регистрации молний дают исследователям достаточно надежные карты распределения частоты молниевых вспышек по поверхности Земли. Бросается в глаза, что частота вспышек над поверхностью океана в среднем на порядок ниже, чем над континентами в тропиках. Одна из причин такой асимметрии – в интенсивной конвекции в континентальных областях, где, суша эффективно прогревается солнечным излучением. Быстрый подъем прогретого насыщенного влагой воздуха способствует образованию мощных конвективных облаков вертикального развития, в верхней части которых температура ниже ~40° C. В результате формируются частицы льда, снежной крупы, града, взаимодействие которых на фоне быстрого восходящего потока и приводит к разделению зарядов. Над океанами высота облаков в среднем ниже, чем над континентами, и процессы электризации менее эффективны. В последнее время обсуждается и другой фактор – различие в концентрациях аэрозолей над океаном и континентами. Так как аэрозоли служат ядрами конденсации, необходимыми для образования частиц в переохлажденном воздухе, их обилие над сушей повышает вероятность сильной электризации облака. Количественный анализ этого фактора требует детальных экспериментов, которые только начинаются.

По последним данным, глобальная среднегодовая частота вспышек (внутри облачные разряды и разряды облако-земля) оценивается как 46 с-1, что более чем в два раза ниже традиционно используемой оценки 100 с-1, предложенной М. Бруксом еще в 1925 г.

Ионизацию нижней и средней атмосферы определяют следующие факторы:

– космические лучи, ионизирующие всю атмосферу;

– ультрафиолетовое и рентгеновское излучение Солнца.

Создаваемая различными ионами электропроводность атмосферы σ очень мала:

σ = (2 – 3) 10—14 (Ом∙м) -1 у поверхности Земли.

В слое перемешивания электропроводность незначительно увеличивается с высотой.

На рис. 13 даны графики зависимости напряженности электрического поля в атмосфере от высоты.


Рис. 13


Рис. 13. Зависимость напряженности электрического поля в атмосфере от высоты. Из справочника «Экология» [141]. а – над водой, б – над сушей


На этом рис. 13 имеются две зависимости: над водой и над сушей. Как видно, эти графики отличаются принципиальным образом, из-за больших испарений в области над водой. Особенно интересна область малых высот от 1 метра до 500 метров, где над водой напряженность с высотой падает, а над сушей, наоборот, возрастает.

Теперь найдем высоту расположения городов и дадим примеры по напряженности. Для примера возьмем три города: Москву, Нижний Новгород и Пятигорск.


Рис. 14


Рис. 14. Составил автор, Александр Матанцев. Зависимость напряженности электрического поля в атмосфере от высоты расположения Москвы, Нижнего Новгорода и Пятигорска.


По графику на рис. 14 находим:

Для Москвы, расположенной на уровне 186 м над уровнем моря, напряженность у поверхности составляет примерно 77 В/м,

для Нижнего Новгорода, расположенного на уровне 136 метров над уровнем моря, напряженность у поверхности земли составляет примерно, 69 В/м;

для Пятигорска, расположенного на высоте 545 м над уровнем моря, напряженность у поверхности земли оставляет, примерно, 121 В/м.

Для объяснения описанной структуры поля и заряда в грозовом облаке рассматривается множество механизмов разделения зарядов. Они зависят от таких факторов, как температура, фазовый состав среды, спектр размеров облачных частиц. Очень важна зависимость величины передаваемого за одно соударение заряда dq от электрического поля. По этому параметру принято подразделять все механизмы на индукционные и безындукционные. Для первого класса механизмов заряд зависит от величины и направления внешнего электрического поля и связан с поляризацией взаимодействующих частиц. Безындукционный обмен зарядами между сталкивающимися частицами в явном виде от напряженности поля не зависит. Несмотря на обилие различных микрофизических механизмов электризации, сейчас многие авторы считают главным безындукционный обмен зарядами при столкновениях мелких (с размерами от единиц до десятков микрометров) кристаллов льда и частиц снежной крупы (с размерами порядка нескольких миллиметров). В лабораторных экспериментах было установлено наличие характерного значения температуры, при которой меняется знак заряда dq, – точки реверса, лежащей обычно между -15 и -20° C. Именно эта особенность сделала данный механизм столь популярным, так как с учетом типичного профиля температуры в облаке она объясняет трипольную структуру распределения плотности заряда.


Рис. 15


Рис. 15. Схематическое изображение типичного конвективного грозового облака [144]


Недавние эксперименты показали, что многие грозовые облака обладают еще более сложной структурой пространственного заряда (до шести слоев). Особенно интересны мезомасштабные (с горизонтальными масштабами от десятков до сотен километров) конвективные системы, служащие важным источником грозовой активности. Их характерная черта – наличие единой электрической структуры, включающей область интенсивной конвекции и протяженную (до нескольких сотен километров) стратифицированную область. В области стратификации восходящие потоки достаточно слабые, но электрическое поле имеет устойчивую многослойную структуру. Вблизи нулевой изотермы здесь формируются достаточно узкие (толщиной в несколько сотен метров) и стабильные слои пространственного заряда, во многом ответственные за высокую молниевую активность мезомасштабных конвективных систем.

Как показали измерения на баллонах, ракетах и самолетах, максимальная напряженность электрического поля в грозовых облаках не превышает обычно 2 кВ/см, что существенно ниже порога пробоя сухого воздуха на рассматриваемых высотах (около 10 кВ/см). Следует отметить, что рост числа быстрых электронов в поле грозового облака при наличии широкого атмосферного ливня сопровождается рождением большого количества вторичных частиц, и это приводит к генерации импульсов тока и радиоизлучения. Если энергия первичной частицы достаточно велика (1017 – 1019 эВ), короткий (несколько микросекунд) импульс радиоизлучения может иметь огромную энергию (до 1 МэВ), что объясняет появление так называемых узких биполярных импульсов, наблюдаемых иногда при наземных и спутниковых радиоизмерениях и коррелирующих с грозовой активностью. Формирование столь интенсивных импульсов тока представляет интерес как для понимания механизма генерации молнии, так и для изучения космических лучей сверхвысоких энергий.

Электрическое поле атмосферы очень изменчиво. Напряженность вертикальной компоненты поля (которая обычно много больше горизонтальной) достигает нескольких кВ/м при осадках, поземках и грозовой облачности.

Поэтому вводится понятие условий хорошей погоды, соответствующих скорости ветра не более 6 м/с в отсутствие всякого рода осадков, инея, тумана, нижней облачности. Но даже в этих условиях вблизи поверхности Земли существует электрическое поле напряженностью около 100 – 150 В/м, вдоль которого в слабо проводящем воздухе течет электрический ток с плотностью несколько пА/м2. Это поле «дышит» – меняется во времени и пространстве, причем колебания относительно среднего значения могут составлять от единиц до десятков процентов. Измерения электрического поля, тока и проводимости в условиях хорошей погоды служат мощным средством изучения электрического состояния атмосферы. Однако использовать его можно, только научившись разделять глобальные (т.е. планетарного масштаба), региональные (с масштабом порядка высоты нейтральной атмосферы 100 км) и локальные возмущения электрических параметров.

Мы подошли к одной из самых волнующих загадок атмосферного электричества – к вопросу о том, как устроена единая атмосферная «электрическая машина». В самом деле, электричество хорошей погоды неразрывно связано с грозовым электричеством и составляет часть распределенного токового контура – глобальной электрической цепи (ГЭЦ, рис. 16). Физической причиной формирования ГЭЦ в атмосфере служит резкий рост проводимости воздуха с высотой. Вблизи поверхности Земли проводимость воздуха очень мала и составляет (2—3) ·10—14 Ом/м, что соответствует концентрации легких ионов около 103 см-3. С ростом высоты благодаря увеличению уровня ионизации, определяемого до 40 км галактическими космическими лучами, а выше – ультрафиолетовым и рентгеновским излучением Солнца, проводимость растет почти экспоненциально с характерным масштабом 6 км. Уже на высоте D-слоя ионосферы (около 80 км) она увеличивается более чем на 10 порядков по сравнению с тропосферой. Проводимость земли в поверхностном слое (и тем более воды в океане) тоже превышает проводимость пограничного слоя атмосферы на 10 -12 порядков. Таким образом, постоянно функционирующие грозовые генераторы оказываются сосредоточенными в достаточно узком слабо проводящем слое между земной поверхностью и ионосферой.

 

Рис. 16


Рис. 16. Схематическое изображение глобальной атмосферной электрической цепи


Часто при упрощенном описании ГЭЦ земная поверхность и нижняя граница ионосферы (около 60—70 км) рассматриваются как обкладки гигантского сферического конденсатора, который разряжается в областях хорошей погоды и заряжается в областях грозовой активности. При этом квазистационарные токи зарядки не замыкаются полностью на землю вблизи грозовых облаков, а частично «затягиваются» в вышележащую область высокой проводимости и растекаются по ионосфере. Считается, что именно квазистационарные токи в первую очередь «несут ответственность» за поддержание разности потенциалов ~350 кВ между ионосферой и землей.

Напряженность электрического поля атмосферы меняется в разное время суток – рис. 17


Рис. 17


Рис. 17. Изменение электрического поля по времени суток [132]


Для абсолютно ясной погоды, в районе экватора, вертикальная напряженность электрического поля у поверхности моря составляет ~ 130 вольт на метр. То есть, подняв руки над головой, вы получите между пальцами и ботинками, разницу напряжений, равную амплитудному напряжению в обычной розетке, около 310 вольт. Почему этого никто не замечает? Во-первых, тело – проводящий объект и его потенциал почти совпадает с потенциалом грунта. Во-вторых, воздух – отличный изолятор и электрический ток через него протекает при гораздо более высоких напряженностях. Сила тока, через воздух, неприлично мала, миллиамперы и доли миллиампера. Кто был в горах и видел, как на пальцах и остриях возникают, в непогоду, «огни святого Эльма» – тот знаком с предельным вариантом атмосферного электричества.

Тот же самый эффект можно получить и совсем простыми, почти домашними средствами. Достаточно иметь под рукой высокий громоотвод или запустить в небо, на металлической проволоке, воздушный шар или змея. Простейшая арифметика. Если с каждым метром напряжение возрастает на 100—200 вольт, то уже в нескольких десятках метров над землей возникают условия для пробоя воздуха электрическим разрядом.

Спрашивается, можно ли получить сходный эффект (газовый разряд на высоко поднятом электроде) в ясную, безоблачную погоду? А если можно, то, что это нам дает в практическом смысле? Ведь за пределами разряда воздух так и останется диэлектриком.

Приблизительно 40% энергии падающего на Землю солнечного света, по ходу обратного излучения в космос, на некоторое время (участок конвективного теплообмена) превращается в энергию потенциального электрического поля. Заряд тропопаузы и стратосферы производят восходящие от поверхности планеты потоки нагретого воздуха с примесью водяного пара. Естественная утечка этого заряда осуществляется за счет ионизации воздуха космическими лучами, гроз, выпадения дождя и снега на горные вершины. Почему высокие пики всегда в снеговых шапках? Туда электрическое поле, день и ночь тянет висящую в верхних слоях атмосферы заряженную ледяную пыль.

В разных районах планеты за счет испарения воды с поверхности и её повторного испарения в облаках (водяной аэрозоль сильно поглощает инфракрасное излучение) из тропосферы переносится в стратосферу до 10—55% интегрального потока солнечной энергии. Среднее содержание водяного пара в атмосфере Земли не превышает 0,3—0,4%, но энергоемкость его испарения-конденсации огромна и совокупный вклад испарения и конденсации в работе «атмосферного теплового насоса» преобладает. Так обеспечивается более 95% теплообмена между поверхностью и стратосферой. Процесс идет круглосуточно. Он наиболее интенсивен в тропическом поясе над океанами, но заметен даже над вечными льдами во время полярной ночи. В средних широтах, за зиму, испаряется до 25—30% выпавшего снега.


Рис. 18


Рис. 18. Круговорот электрических зарядов в атмосфере [132]


Работа описанного атмосферного механизма сопровождается своеобразными побочными эффектами. Изменение агрегатного состояния вещества резко меняет его диэлектрическую проницаемость. На границе раздела фаз всегда возникает спонтанная электризация. Происходит преобразование части тепловой энергии компонентов воздуха в электричество. Конденсация водяных паров, в холодных верхних слоях газовой оболочки, сопровождается накоплением там большого количества положительно заряженных частиц. Так возникают объемные заряды, образующие сплошной слой в верхних слоях атмосферы Земли.

Самые верхние слои атмосферы сильно ионизированы космическим излучением и представляют собой область высокой проводимости. Заметные изменения напряженности поля над любой точкой поверхности планеты сопровождаются быстрым перераспределением зарядов в стратосфере и ионосфере. Поэтому, средняя напряженность атмосферного поля по всей планете почти стабильна.

Электрическое поле самых нижних слоев атмосферы, тем не менее, очень изменчиво. Оно связано с взвешенными в воздухе мельчайшими капельками воды и кристаллами льда. Свободные носители зарядов (ионы и электроны) в тропосфере почти отсутствуют. Это придает плотным слоям воздуха изоляционные свойства и препятствует саморазряду аэрозольной массы. В силу малой подвижности частиц конденсата, объемные электрические заряды (облака, струи тумана и пр.) крепко связаны с несущими турбулентными потоками и долго перемещаются с ними (часто неделями), пока не испаряются, не разряжаются на горные вершины или не выпадают на поверхность с осадками.

Если нужен сильный разряд, то нужно «острие». Не простое, неподвижное, а мотающееся по ветру, обдуваемое напором воздуха. Например, стальная фольга (в идеале) или металлизированная бумага, от влаги покрытая лаком. Длинная полоса такой фольги сейчас и трепещет на ветру.

Другая идея получения электричества из ионизированного воздуха.

Человек уже давно умеет получать электричество прямо из воздуха. Когда мы дышим, мы это делаем. Если мы быстро бегаем, то потребляем больше энергии, и поэтому интенсивно дышим. Как же собирать ионы в воздухе и получать электричество? Можно прогонять поток воздуха через сильное магнитное поле. Положительные и отрицательные ионы будут разлетаться в разные стороны, разделяемые магнитным полем. Они должны попадать на обкладки, к которым будет подключён токосъёмник, например, конденсатор.

You have finished the free preview. Would you like to read more?